MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onesuc Structured version   Unicode version

Theorem onesuc 7192
Description: Exponentiation with a successor exponent. Definition 8.30 of [TakeutiZaring] p. 67. (Contributed by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onesuc  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )

Proof of Theorem onesuc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 limom 6710 . 2  |-  Lim  om
2 frsuc 7114 . . 3  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  B ) ) )
3 peano2 6715 . . . 4  |-  ( B  e.  om  ->  suc  B  e.  om )
4 fvres 5886 . . . 4  |-  ( suc 
B  e.  om  ->  ( ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  suc  B )  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
53, 4syl 16 . . 3  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  suc  B )  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
6 fvres 5886 . . . 4  |-  ( B  e.  om  ->  (
( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
76fveq2d 5876 . . 3  |-  ( B  e.  om  ->  (
( x  e.  _V  |->  ( x  .o  A
) ) `  (
( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o )  |`  om ) `  B
) )  =  ( ( x  e.  _V  |->  ( x  .o  A
) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
82, 5, 73eqtr3d 2516 . 2  |-  ( B  e.  om  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
91, 8oesuclem 7187 1  |-  ( ( A  e.  On  /\  B  e.  om )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118    |-> cmpt 4511   Oncon0 4884   suc csuc 4886    |` cres 5007   ` cfv 5594  (class class class)co 6295   omcom 6695   reccrdg 7087   1oc1o 7135    .o comu 7140    ^o coe 7141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-1o 7142  df-omul 7147  df-oexp 7148
This theorem is referenced by:  oe1  7205  nnesuc  7269
  Copyright terms: Public domain W3C validator