Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmini Structured version   Visualization version   Unicode version

Theorem oneqmini 5474
 Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmini
Distinct variable groups:   ,   ,

Proof of Theorem oneqmini
StepHypRef Expression
1 ssint 4250 . . . . . 6
2 ssel 3426 . . . . . . . . . . . 12
3 ssel 3426 . . . . . . . . . . . 12
42, 3anim12d 566 . . . . . . . . . . 11
5 ontri1 5457 . . . . . . . . . . 11
64, 5syl6 34 . . . . . . . . . 10
76expdimp 439 . . . . . . . . 9
87pm5.74d 251 . . . . . . . 8
9 con2b 336 . . . . . . . 8
108, 9syl6bb 265 . . . . . . 7
1110ralbidv2 2823 . . . . . 6
121, 11syl5bb 261 . . . . 5
1312biimprd 227 . . . 4
1413expimpd 608 . . 3
15 intss1 4249 . . . . 5
1615a1i 11 . . . 4