Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif1 Structured version   Visualization version   Unicode version

Theorem ondif1 7221
 Description: Two ways to say that is a nonzero ordinal number. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif1

Proof of Theorem ondif1
StepHypRef Expression
1 dif1o 7220 . 2
2 on0eln0 5485 . . 3
32pm5.32i 649 . 2
41, 3bitr4i 260 1
 Colors of variables: wff setvar class Syntax hints:   wb 189   wa 376   wcel 1904   wne 2641   cdif 3387  c0 3722  con0 5430  c1o 7193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-tr 4491  df-eprel 4750  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-ord 5433  df-on 5434  df-suc 5436  df-1o 7200 This theorem is referenced by:  cantnflem2  8213  oef1o  8221  cnfcom3  8227  infxpenc  8467
 Copyright terms: Public domain W3C validator