MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omxpen Structured version   Unicode version

Theorem omxpen 7612
Description: The cardinal and ordinal products are always equinumerous. Exercise 10 of [TakeutiZaring] p. 89. (Contributed by Mario Carneiro, 3-Mar-2013.)
Assertion
Ref Expression
omxpen  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  ~~  ( A  X.  B ) )

Proof of Theorem omxpen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomeng 7602 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  X.  B
)  ~~  ( B  X.  A ) )
2 xpexg 6575 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  X.  A
)  e.  _V )
32ancoms 451 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  X.  A
)  e.  _V )
4 omcl 7178 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
5 eqid 2454 . . . . 5  |-  ( x  e.  B ,  y  e.  A  |->  ( ( A  .o  x )  +o  y ) )  =  ( x  e.  B ,  y  e.  A  |->  ( ( A  .o  x )  +o  y ) )
65omxpenlem 7611 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( x  e.  B ,  y  e.  A  |->  ( ( A  .o  x )  +o  y
) ) : ( B  X.  A ) -1-1-onto-> ( A  .o  B ) )
7 f1oen2g 7525 . . . 4  |-  ( ( ( B  X.  A
)  e.  _V  /\  ( A  .o  B
)  e.  On  /\  ( x  e.  B ,  y  e.  A  |->  ( ( A  .o  x )  +o  y
) ) : ( B  X.  A ) -1-1-onto-> ( A  .o  B ) )  ->  ( B  X.  A )  ~~  ( A  .o  B ) )
83, 4, 6, 7syl3anc 1226 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( B  X.  A
)  ~~  ( A  .o  B ) )
9 entr 7560 . . 3  |-  ( ( ( A  X.  B
)  ~~  ( B  X.  A )  /\  ( B  X.  A )  ~~  ( A  .o  B
) )  ->  ( A  X.  B )  ~~  ( A  .o  B
) )
101, 8, 9syl2anc 659 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  X.  B
)  ~~  ( A  .o  B ) )
1110ensymd 7559 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  ~~  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    e. wcel 1823   _Vcvv 3106   class class class wbr 4439   Oncon0 4867    X. cxp 4986   -1-1-onto->wf1o 5569  (class class class)co 6270    |-> cmpt2 6272    +o coa 7119    .o comu 7120    ~~ cen 7506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-er 7303  df-en 7510
This theorem is referenced by:  xpnum  8323  infxpenc2  8390  infxpenc2OLD  8394
  Copyright terms: Public domain W3C validator