MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omword Structured version   Unicode version

Theorem omword 7211
Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004.)
Assertion
Ref Expression
omword  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )

Proof of Theorem omword
StepHypRef Expression
1 omord2 7208 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
2 3anrot 976 . . . . 5  |-  ( ( C  e.  On  /\  A  e.  On  /\  B  e.  On )  <->  ( A  e.  On  /\  B  e.  On  /\  C  e.  On ) )
3 omcan 7210 . . . . 5  |-  ( ( ( C  e.  On  /\  A  e.  On  /\  B  e.  On )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  =  ( C  .o  B
)  <->  A  =  B
) )
42, 3sylanbr 471 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  =  ( C  .o  B
)  <->  A  =  B
) )
54bicomd 201 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  =  B  <->  ( C  .o  A )  =  ( C  .o  B ) ) )
61, 5orbi12d 707 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( A  e.  B  \/  A  =  B )  <->  ( ( C  .o  A )  e.  ( C  .o  B
)  \/  ( C  .o  A )  =  ( C  .o  B
) ) ) )
7 onsseleq 4908 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B )
) )
873adant3 1014 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  C_  B  <->  ( A  e.  B  \/  A  =  B ) ) )
98adantr 463 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( A  e.  B  \/  A  =  B
) ) )
10 omcl 7178 . . . . . . 7  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  A
)  e.  On )
11 omcl 7178 . . . . . . 7  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  .o  B
)  e.  On )
1210, 11anim12dan 835 . . . . . 6  |-  ( ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) )  ->  ( ( C  .o  A )  e.  On  /\  ( C  .o  B )  e.  On ) )
1312ancoms 451 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  On  /\  ( C  .o  B )  e.  On ) )
14133impa 1189 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On ) )
15 onsseleq 4908 . . . 4  |-  ( ( ( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  ( ( C  .o  A )  e.  ( C  .o  B
)  \/  ( C  .o  A )  =  ( C  .o  B
) ) ) )
1614, 15syl 16 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  C_  ( C  .o  B )  <->  ( ( C  .o  A )  e.  ( C  .o  B
)  \/  ( C  .o  A )  =  ( C  .o  B
) ) ) )
1716adantr 463 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  C_  ( C  .o  B
)  <->  ( ( C  .o  A )  e.  ( C  .o  B
)  \/  ( C  .o  A )  =  ( C  .o  B
) ) ) )
186, 9, 173bitr4d 285 1  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  C_  B 
<->  ( C  .o  A
)  C_  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823    C_ wss 3461   (/)c0 3783   Oncon0 4867  (class class class)co 6270    .o comu 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-recs 7034  df-rdg 7068  df-oadd 7126  df-omul 7127
This theorem is referenced by:  omwordi  7212  omeulem2  7224  oeeui  7243
  Copyright terms: Public domain W3C validator