MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Unicode version

Theorem omv 6715
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem omv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6048 . . . . 5  |-  ( y  =  A  ->  (
x  +o  y )  =  ( x  +o  A ) )
21mpteq2dv 4256 . . . 4  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) ) )
3 rdgeq1 6628 . . . 4  |-  ( ( x  e.  _V  |->  ( x  +o  y ) )  =  ( x  e.  _V  |->  ( x  +o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
42, 3syl 16 . . 3  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) )  =  rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) )
54fveq1d 5689 . 2  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  y ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  z )
)
6 fveq2 5687 . 2  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  z )  =  ( rec (
( x  e.  _V  |->  ( x  +o  A
) ) ,  (/) ) `  B )
)
7 df-omul 6688 . 2  |-  .o  =  ( y  e.  On ,  z  e.  On  |->  ( rec ( ( x  e.  _V  |->  ( x  +o  y ) ) ,  (/) ) `  z
) )
8 fvex 5701 . 2  |-  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B )  e.  _V
95, 6, 7, 8ovmpt2 6168 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( x  e. 
_V  |->  ( x  +o  A ) ) ,  (/) ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   (/)c0 3588    e. cmpt 4226   Oncon0 4541   ` cfv 5413  (class class class)co 6040   reccrdg 6626    +o coa 6680    .o comu 6681
This theorem is referenced by:  om0  6720  omsuc  6729  onmsuc  6732  omlim  6736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-recs 6592  df-rdg 6627  df-omul 6688
  Copyright terms: Public domain W3C validator