MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsson Structured version   Unicode version

Theorem omsson 6689
Description: Omega is a subset of  On. (Contributed by NM, 13-Jun-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
omsson  |-  om  C_  On

Proof of Theorem omsson
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfom2 6687 . 2  |-  om  =  { x  e.  On  |  suc  x  C_  { y  e.  On  |  -.  Lim  y } }
2 ssrab2 3570 . 2  |-  { x  e.  On  |  suc  x  C_ 
{ y  e.  On  |  -.  Lim  y } }  C_  On
31, 2eqsstri 3519 1  |-  om  C_  On
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   {crab 2797    C_ wss 3461   Oncon0 4868   Lim wlim 4869   suc csuc 4870   omcom 6685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-om 6686
This theorem is referenced by:  limomss  6690  nnon  6691  ordom  6694  omssnlim  6699  nnunifi  7773  unblem1  7774  unblem2  7775  unblem3  7776  unblem4  7777  isfinite2  7780  card2inf  7984  ackbij1lem16  8618  ackbij1lem18  8620  fin23lem26  8708  fin23lem27  8711  isf32lem5  8740  fin1a2lem6  8788  pwfseqlem3  9041  tskinf  9150  grothomex  9210  ltsopi  9269  dmaddpi  9271  dmmulpi  9272  2ndcdisj  19934  omsinds  29274  finminlem  30111
  Copyright terms: Public domain W3C validator