MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmo Structured version   Unicode version

Theorem omsmo 7295
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmo  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  F : om -1-1-> A )
Distinct variable group:    x, F
Allowed substitution hint:    A( x)

Proof of Theorem omsmo
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 753 . 2  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  F : om --> A )
2 omsmolem 7294 . . . . . . . . 9  |-  ( z  e.  om  ->  (
( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( y  e.  z  ->  ( F `  y )  e.  ( F `  z ) ) ) )
32adantl 464 . . . . . . . 8  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( y  e.  z  ->  ( F `  y )  e.  ( F `  z ) ) ) )
43imp 427 . . . . . . 7  |-  ( ( ( y  e.  om  /\  z  e.  om )  /\  ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) ) )  ->  ( y  e.  z  ->  ( F `  y )  e.  ( F `  z ) ) )
5 omsmolem 7294 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) ) )
65adantr 463 . . . . . . . 8  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( ( ( A 
C_  On  /\  F : om
--> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  -> 
( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) ) )
76imp 427 . . . . . . 7  |-  ( ( ( y  e.  om  /\  z  e.  om )  /\  ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) ) )  ->  ( z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) )
84, 7orim12d 836 . . . . . 6  |-  ( ( ( y  e.  om  /\  z  e.  om )  /\  ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) ) )  ->  ( ( y  e.  z  \/  z  e.  y )  ->  (
( F `  y
)  e.  ( F `
 z )  \/  ( F `  z
)  e.  ( F `
 y ) ) ) )
98ancoms 451 . . . . 5  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  ( y  e.  om  /\  z  e.  om )
)  ->  ( (
y  e.  z  \/  z  e.  y )  ->  ( ( F `
 y )  e.  ( F `  z
)  \/  ( F `
 z )  e.  ( F `  y
) ) ) )
109con3d 133 . . . 4  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  ( y  e.  om  /\  z  e.  om )
)  ->  ( -.  ( ( F `  y )  e.  ( F `  z )  \/  ( F `  z )  e.  ( F `  y ) )  ->  -.  (
y  e.  z  \/  z  e.  y ) ) )
11 ffvelrn 6005 . . . . . . . . . . 11  |-  ( ( F : om --> A  /\  y  e.  om )  ->  ( F `  y
)  e.  A )
12 ssel 3483 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  ( ( F `  y )  e.  A  ->  ( F `  y )  e.  On ) )
1311, 12syl5 32 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( ( F : om --> A  /\  y  e.  om )  ->  ( F `  y
)  e.  On ) )
1413expdimp 435 . . . . . . . . 9  |-  ( ( A  C_  On  /\  F : om --> A )  -> 
( y  e.  om  ->  ( F `  y
)  e.  On ) )
15 eloni 4877 . . . . . . . . 9  |-  ( ( F `  y )  e.  On  ->  Ord  ( F `  y ) )
1614, 15syl6 33 . . . . . . . 8  |-  ( ( A  C_  On  /\  F : om --> A )  -> 
( y  e.  om  ->  Ord  ( F `  y ) ) )
17 ffvelrn 6005 . . . . . . . . . . 11  |-  ( ( F : om --> A  /\  z  e.  om )  ->  ( F `  z
)  e.  A )
18 ssel 3483 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  ( ( F `  z )  e.  A  ->  ( F `  z )  e.  On ) )
1917, 18syl5 32 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( ( F : om --> A  /\  z  e.  om )  ->  ( F `  z
)  e.  On ) )
2019expdimp 435 . . . . . . . . 9  |-  ( ( A  C_  On  /\  F : om --> A )  -> 
( z  e.  om  ->  ( F `  z
)  e.  On ) )
21 eloni 4877 . . . . . . . . 9  |-  ( ( F `  z )  e.  On  ->  Ord  ( F `  z ) )
2220, 21syl6 33 . . . . . . . 8  |-  ( ( A  C_  On  /\  F : om --> A )  -> 
( z  e.  om  ->  Ord  ( F `  z ) ) )
2316, 22anim12d 561 . . . . . . 7  |-  ( ( A  C_  On  /\  F : om --> A )  -> 
( ( y  e. 
om  /\  z  e.  om )  ->  ( Ord  ( F `  y )  /\  Ord  ( F `
 z ) ) ) )
2423imp 427 . . . . . 6  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  ( y  e. 
om  /\  z  e.  om ) )  ->  ( Ord  ( F `  y
)  /\  Ord  ( F `
 z ) ) )
25 ordtri3 4903 . . . . . 6  |-  ( ( Ord  ( F `  y )  /\  Ord  ( F `  z ) )  ->  ( ( F `  y )  =  ( F `  z )  <->  -.  (
( F `  y
)  e.  ( F `
 z )  \/  ( F `  z
)  e.  ( F `
 y ) ) ) )
2624, 25syl 16 . . . . 5  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  ( y  e. 
om  /\  z  e.  om ) )  ->  (
( F `  y
)  =  ( F `
 z )  <->  -.  (
( F `  y
)  e.  ( F `
 z )  \/  ( F `  z
)  e.  ( F `
 y ) ) ) )
2726adantlr 712 . . . 4  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  ( y  e.  om  /\  z  e.  om )
)  ->  ( ( F `  y )  =  ( F `  z )  <->  -.  (
( F `  y
)  e.  ( F `
 z )  \/  ( F `  z
)  e.  ( F `
 y ) ) ) )
28 nnord 6681 . . . . . 6  |-  ( y  e.  om  ->  Ord  y )
29 nnord 6681 . . . . . 6  |-  ( z  e.  om  ->  Ord  z )
30 ordtri3 4903 . . . . . 6  |-  ( ( Ord  y  /\  Ord  z )  ->  (
y  =  z  <->  -.  (
y  e.  z  \/  z  e.  y ) ) )
3128, 29, 30syl2an 475 . . . . 5  |-  ( ( y  e.  om  /\  z  e.  om )  ->  ( y  =  z  <->  -.  ( y  e.  z  \/  z  e.  y ) ) )
3231adantl 464 . . . 4  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  ( y  e.  om  /\  z  e.  om )
)  ->  ( y  =  z  <->  -.  ( y  e.  z  \/  z  e.  y ) ) )
3310, 27, 323imtr4d 268 . . 3  |-  ( ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e.  om  ( F `  x )  e.  ( F `  suc  x ) )  /\  ( y  e.  om  /\  z  e.  om )
)  ->  ( ( F `  y )  =  ( F `  z )  ->  y  =  z ) )
3433ralrimivva 2875 . 2  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  A. y  e.  om  A. z  e. 
om  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) )
35 dff13 6141 . 2  |-  ( F : om -1-1-> A  <->  ( F : om --> A  /\  A. y  e.  om  A. z  e.  om  ( ( F `
 y )  =  ( F `  z
)  ->  y  =  z ) ) )
361, 34, 35sylanbrc 662 1  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. x  e. 
om  ( F `  x )  e.  ( F `  suc  x
) )  ->  F : om -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461   Ord word 4866   Oncon0 4867   suc csuc 4869   -->wf 5566   -1-1->wf1 5567   ` cfv 5570   omcom 6673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fv 5578  df-om 6674
This theorem is referenced by:  unblem4  7767
  Copyright terms: Public domain W3C validator