MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omordi Structured version   Unicode version

Theorem omordi 7252
Description: Ordering property of ordinal multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omordi  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )

Proof of Theorem omordi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onelon 5435 . . . . . 6  |-  ( ( B  e.  On  /\  A  e.  B )  ->  A  e.  On )
21ex 432 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  A  e.  On ) )
3 eleq2 2475 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
4 oveq2 6286 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( C  .o  x )  =  ( C  .o  (/) ) )
54eleq2d 2472 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( ( C  .o  A )  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
63, 5imbi12d 318 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( A  e.  x  -> 
( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  (/)  ->  ( C  .o  A
)  e.  ( C  .o  (/) ) ) ) )
7 eleq2 2475 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
8 oveq2 6286 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( C  .o  x )  =  ( C  .o  y
) )
98eleq2d 2472 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  y ) ) )
107, 9imbi12d 318 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )
11 eleq2 2475 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
12 oveq2 6286 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( C  .o  x
)  =  ( C  .o  suc  y ) )
1312eleq2d 2472 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( C  .o  A )  e.  ( C  .o  x )  <-> 
( C  .o  A
)  e.  ( C  .o  suc  y ) ) )
1411, 13imbi12d 318 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) )  <->  ( A  e. 
suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) )
15 eleq2 2475 . . . . . . . . . 10  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
16 oveq2 6286 . . . . . . . . . . 11  |-  ( x  =  B  ->  ( C  .o  x )  =  ( C  .o  B
) )
1716eleq2d 2472 . . . . . . . . . 10  |-  ( x  =  B  ->  (
( C  .o  A
)  e.  ( C  .o  x )  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
1815, 17imbi12d 318 . . . . . . . . 9  |-  ( x  =  B  ->  (
( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) )  <-> 
( A  e.  B  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) )
19 noel 3742 . . . . . . . . . . 11  |-  -.  A  e.  (/)
2019pm2.21i 131 . . . . . . . . . 10  |-  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) )
2120a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  (/)  ->  ( C  .o  A )  e.  ( C  .o  (/) ) ) )
22 elsuci 5476 . . . . . . . . . . . . . . 15  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
23 omcl 7223 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  y
)  e.  On )
24 simpl 455 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  y  e.  On )  ->  C  e.  On )
2523, 24jca 530 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  y )  e.  On  /\  C  e.  On ) )
26 oaword1 7238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( C  .o  y
)  C_  ( ( C  .o  y )  +o  C ) )
2726sseld 3441 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
2827imim2d 51 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) ) )
2928imp 427 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) )  ->  ( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C ) ) )
3029adantrl 714 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
31 oaord1 7237 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  y
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  y )  e.  ( ( C  .o  y )  +o  C ) ) )
3231biimpa 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) )
33 oveq2 6286 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =  y  ->  ( C  .o  A )  =  ( C  .o  y
) )
3433eleq1d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =  y  ->  (
( C  .o  A
)  e.  ( ( C  .o  y )  +o  C )  <->  ( C  .o  y )  e.  ( ( C  .o  y
)  +o  C ) ) )
3532, 34syl5ibrcom 222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3635adantrr 715 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  =  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
3730, 36jaod 378 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  .o  y )  e.  On  /\  C  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3825, 37sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( C  .o  A )  e.  ( ( C  .o  y )  +o  C
) ) )
3922, 38syl5 30 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
40 omsuc 7213 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  .o  suc  y )  =  ( ( C  .o  y
)  +o  C ) )
4140eleq2d 2472 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4241adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( ( C  .o  A )  e.  ( C  .o  suc  y
)  <->  ( C  .o  A )  e.  ( ( C  .o  y
)  +o  C ) ) )
4339, 42sylibrd 234 . . . . . . . . . . . . 13  |-  ( ( ( C  e.  On  /\  y  e.  On )  /\  ( (/)  e.  C  /\  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) ) ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) )
4443exp43 610 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  (
y  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4544com12 29 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4645adantld 465 . . . . . . . . . 10  |-  ( y  e.  On  ->  (
( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  ->  ( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y ) ) ) ) ) )
4746impd 429 . . . . . . . . 9  |-  ( y  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y ) )  -> 
( A  e.  suc  y  ->  ( C  .o  A )  e.  ( C  .o  suc  y
) ) ) ) )
48 id 22 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  e.  On  /\  Lim  x ) )
4948ad2ant2r 745 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  e.  On  /\  Lim  x
) )
50 limsuc 6667 . . . . . . . . . . . . . . . . . . 19  |-  ( Lim  x  ->  ( A  e.  x  <->  suc  A  e.  x
) )
5150biimpa 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  x )  ->  suc  A  e.  x )
52 oveq2 6286 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  suc  A  -> 
( C  .o  y
)  =  ( C  .o  suc  A ) )
5352ssiun2s 4315 . . . . . . . . . . . . . . . . . 18  |-  ( suc 
A  e.  x  -> 
( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
5451, 53syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  U_ y  e.  x  ( C  .o  y
) )
5554adantll 712 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  U_ y  e.  x  ( C  .o  y ) )
56 vex 3062 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
57 omlim 7220 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( C  .o  x )  =  U_ y  e.  x  ( C  .o  y ) )
5856, 57mpanr1 681 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  On  /\  Lim  x )  ->  ( C  .o  x )  = 
U_ y  e.  x  ( C  .o  y
) )
5958adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  x
)  =  U_ y  e.  x  ( C  .o  y ) )
6055, 59sseqtr4d 3479 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\ 
Lim  x )  /\  A  e.  x )  ->  ( C  .o  suc  A )  C_  ( C  .o  x ) )
6149, 60sylan 469 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  suc  A ) 
C_  ( C  .o  x ) )
62 omcl 7223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  A
)  e.  On )
63 oaord1 7237 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( C  .o  A
)  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6462, 63sylan 469 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  C  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6564anabss1 815 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( (/)  e.  C  <->  ( C  .o  A )  e.  ( ( C  .o  A )  +o  C ) ) )
6665biimpa 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( ( C  .o  A
)  +o  C ) )
67 omsuc 7213 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A )  +o  C ) )
6867adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  suc  A )  =  ( ( C  .o  A
)  +o  C ) )
6966, 68eleqtrrd 2493 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  (/)  e.  C )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7069adantrl 714 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C ) )  ->  ( C  .o  A )  e.  ( C  .o  suc  A
) )
7170adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  suc  A ) )
7261, 71sseldd 3443 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  On  /\  A  e.  On )  /\  ( Lim  x  /\  (/)  e.  C
) )  /\  A  e.  x )  ->  ( C  .o  A )  e.  ( C  .o  x
) )
7372exp53 615 . . . . . . . . . . . 12  |-  ( C  e.  On  ->  ( A  e.  On  ->  ( Lim  x  ->  ( (/) 
e.  C  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) ) )
7473com13 80 . . . . . . . . . . 11  |-  ( Lim  x  ->  ( A  e.  On  ->  ( C  e.  On  ->  ( (/)  e.  C  ->  ( A  e.  x  ->  ( C  .o  A
)  e.  ( C  .o  x ) ) ) ) ) )
7574imp4c 589 . . . . . . . . . 10  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) )
7675a1dd 44 . . . . . . . . 9  |-  ( Lim  x  ->  ( (
( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A. y  e.  x  ( A  e.  y  ->  ( C  .o  A )  e.  ( C  .o  y
) )  ->  ( A  e.  x  ->  ( C  .o  A )  e.  ( C  .o  x ) ) ) ) )
776, 10, 14, 18, 21, 47, 76tfinds3 6682 . . . . . . . 8  |-  ( B  e.  On  ->  (
( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B
) ) ) )
7877com23 78 . . . . . . 7  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C
)  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
7978exp4a 604 . . . . . 6  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( ( A  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  ->  ( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8079exp4a 604 . . . . 5  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( A  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) ) )
812, 80mpdd 38 . . . 4  |-  ( B  e.  On  ->  ( A  e.  B  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8281com34 83 . . 3  |-  ( B  e.  On  ->  ( A  e.  B  ->  (
(/)  e.  C  ->  ( C  e.  On  ->  ( C  .o  A )  e.  ( C  .o  B ) ) ) ) )
8382com24 87 . 2  |-  ( B  e.  On  ->  ( C  e.  On  ->  (
(/)  e.  C  ->  ( A  e.  B  -> 
( C  .o  A
)  e.  ( C  .o  B ) ) ) ) )
8483imp31 430 1  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   _Vcvv 3059    C_ wss 3414   (/)c0 3738   U_ciun 4271   Oncon0 5410   Lim wlim 5411   suc csuc 5412  (class class class)co 6278    +o coa 7164    .o comu 7165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-oadd 7171  df-omul 7172
This theorem is referenced by:  omord2  7253  omcan  7255  odi  7265  omass  7266  oen0  7272  oeordi  7273  oeordsuc  7280
  Copyright terms: Public domain W3C validator