MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord2 Structured version   Unicode version

Theorem omord2 7214
Description: Ordering property of ordinal multiplication. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omord2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )

Proof of Theorem omord2
StepHypRef Expression
1 omordi 7213 . . 3  |-  ( ( ( B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
213adantl1 1151 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
3 oveq2 6285 . . . . . 6  |-  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B
) )
43a1i 11 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  =  B  ->  ( C  .o  A )  =  ( C  .o  B ) ) )
5 omordi 7213 . . . . . 6  |-  ( ( ( A  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
653adantl2 1152 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( B  e.  A  ->  ( C  .o  B )  e.  ( C  .o  A ) ) )
74, 6orim12d 836 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( A  =  B  \/  B  e.  A )  ->  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
87con3d 133 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) )  ->  -.  ( A  =  B  \/  B  e.  A ) ) )
9 omcl 7184 . . . . . . . 8  |-  ( ( C  e.  On  /\  A  e.  On )  ->  ( C  .o  A
)  e.  On )
10 omcl 7184 . . . . . . . 8  |-  ( ( C  e.  On  /\  B  e.  On )  ->  ( C  .o  B
)  e.  On )
11 eloni 4874 . . . . . . . . 9  |-  ( ( C  .o  A )  e.  On  ->  Ord  ( C  .o  A
) )
12 eloni 4874 . . . . . . . . 9  |-  ( ( C  .o  B )  e.  On  ->  Ord  ( C  .o  B
) )
13 ordtri2 4899 . . . . . . . . 9  |-  ( ( Ord  ( C  .o  A )  /\  Ord  ( C  .o  B
) )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  <->  -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
1411, 12, 13syl2an 477 . . . . . . . 8  |-  ( ( ( C  .o  A
)  e.  On  /\  ( C  .o  B
)  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
159, 10, 14syl2an 477 . . . . . . 7  |-  ( ( ( C  e.  On  /\  A  e.  On )  /\  ( C  e.  On  /\  B  e.  On ) )  -> 
( ( C  .o  A )  e.  ( C  .o  B )  <->  -.  ( ( C  .o  A )  =  ( C  .o  B )  \/  ( C  .o  B )  e.  ( C  .o  A ) ) ) )
1615anandis 828 . . . . . 6  |-  ( ( C  e.  On  /\  ( A  e.  On  /\  B  e.  On ) )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
1716ancoms 453 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
18173impa 1190 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  <->  -.  (
( C  .o  A
)  =  ( C  .o  B )  \/  ( C  .o  B
)  e.  ( C  .o  A ) ) ) )
1918adantr 465 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  <->  -.  ( ( C  .o  A )  =  ( C  .o  B
)  \/  ( C  .o  B )  e.  ( C  .o  A
) ) ) )
20 eloni 4874 . . . . . 6  |-  ( A  e.  On  ->  Ord  A )
21 eloni 4874 . . . . . 6  |-  ( B  e.  On  ->  Ord  B )
22 ordtri2 4899 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
2320, 21, 22syl2an 477 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A
) ) )
24233adant3 1015 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A )
) )
2524adantr 465 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  -.  ( A  =  B  \/  B  e.  A ) ) )
268, 19, 253imtr4d 268 . 2  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( ( C  .o  A )  e.  ( C  .o  B
)  ->  A  e.  B ) )
272, 26impbid 191 1  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   (/)c0 3767   Ord word 4863   Oncon0 4864  (class class class)co 6277    .o comu 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-recs 7040  df-rdg 7074  df-oadd 7132  df-omul 7133
This theorem is referenced by:  omord  7215  omword  7217  oeeui  7249  omabs  7294  omxpenlem  7616  cantnflt  8089  cantnfltOLD  8119  cnfcom  8142  cnfcomOLD  8150
  Copyright terms: Public domain W3C validator