MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omord Structured version   Unicode version

Theorem omord 7235
Description: Ordering property of ordinal multiplication. Proposition 8.19 of [TakeutiZaring] p. 63. (Contributed by NM, 14-Dec-2004.)
Assertion
Ref Expression
omord  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )

Proof of Theorem omord
StepHypRef Expression
1 omord2 7234 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  /\  (/)  e.  C )  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) )
21ex 434 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  ( (/) 
e.  C  ->  ( A  e.  B  <->  ( C  .o  A )  e.  ( C  .o  B ) ) ) )
32pm5.32rd 640 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
4 simpl 457 . . 3  |-  ( ( ( C  .o  A
)  e.  ( C  .o  B )  /\  (/) 
e.  C )  -> 
( C  .o  A
)  e.  ( C  .o  B ) )
5 ne0i 3799 . . . . . . . 8  |-  ( ( C  .o  A )  e.  ( C  .o  B )  ->  ( C  .o  B )  =/=  (/) )
6 om0r 7207 . . . . . . . . . 10  |-  ( B  e.  On  ->  ( (/) 
.o  B )  =  (/) )
7 oveq1 6303 . . . . . . . . . . 11  |-  ( C  =  (/)  ->  ( C  .o  B )  =  ( (/)  .o  B
) )
87eqeq1d 2459 . . . . . . . . . 10  |-  ( C  =  (/)  ->  ( ( C  .o  B )  =  (/)  <->  ( (/)  .o  B
)  =  (/) ) )
96, 8syl5ibrcom 222 . . . . . . . . 9  |-  ( B  e.  On  ->  ( C  =  (/)  ->  ( C  .o  B )  =  (/) ) )
109necon3d 2681 . . . . . . . 8  |-  ( B  e.  On  ->  (
( C  .o  B
)  =/=  (/)  ->  C  =/=  (/) ) )
115, 10syl5 32 . . . . . . 7  |-  ( B  e.  On  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
1211adantr 465 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  C  =/=  (/) ) )
13 on0eln0 4942 . . . . . . 7  |-  ( C  e.  On  ->  ( (/) 
e.  C  <->  C  =/=  (/) ) )
1413adantl 466 . . . . . 6  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( (/)  e.  C  <->  C  =/=  (/) ) )
1512, 14sylibrd 234 . . . . 5  |-  ( ( B  e.  On  /\  C  e.  On )  ->  ( ( C  .o  A )  e.  ( C  .o  B )  ->  (/)  e.  C ) )
16153adant1 1014 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  ->  (/) 
e.  C ) )
1716ancld 553 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( C  .o  A
)  e.  ( C  .o  B )  -> 
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C ) ) )
184, 17impbid2 204 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( ( C  .o  A )  e.  ( C  .o  B )  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
193, 18bitrd 253 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  e.  B  /\  (/)  e.  C )  <-> 
( C  .o  A
)  e.  ( C  .o  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   (/)c0 3793   Oncon0 4887  (class class class)co 6296    .o comu 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-oadd 7152  df-omul 7153
This theorem is referenced by:  omlimcl  7245  oneo  7248
  Copyright terms: Public domain W3C validator