MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth Structured version   Unicode version

Theorem omopth 7118
Description: An ordered pair theorem for finite integers. Analogous to nn0opthi 12069. (Contributed by Scott Fenton, 1-May-2012.)
Assertion
Ref Expression
omopth  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem omopth
StepHypRef Expression
1 oveq1 6119 . . . . . 6  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  +o  B )  =  ( if ( A  e.  om ,  A ,  (/) )  +o  B
) )
21, 1oveq12d 6130 . . . . 5  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  +o  B
)  .o  ( A  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) ) )
32oveq1d 6127 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B ) )
43eqeq1d 2451 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
5 eqeq1 2449 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  =  C  <->  if ( A  e.  om ,  A ,  (/) )  =  C ) )
65anbi1d 704 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) )
74, 6bibi12d 321 . 2  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( A  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) ) )
8 oveq2 6120 . . . . . 6  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  +o  B )  =  ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) ) )
98, 8oveq12d 6130 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) ) )
10 id 22 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  B  =  if ( B  e. 
om ,  B ,  (/) ) )
119, 10oveq12d 6130 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )
1211eqeq1d 2451 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
13 eqeq1 2449 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( B  =  D  <->  if ( B  e.  om ,  B ,  (/) )  =  D ) )
1413anbi2d 703 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
1512, 14bibi12d 321 . 2  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
16 oveq1 6119 . . . . . 6  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( C  +o  D )  =  ( if ( C  e.  om ,  C ,  (/) )  +o  D
) )
1716, 16oveq12d 6130 . . . . 5  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( C  +o  D
)  .o  ( C  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) ) )
1817oveq1d 6127 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) )
1918eqeq2d 2454 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) ) )
20 eqeq2 2452 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  =  C  <->  if ( A  e. 
om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) ) ) )
2120anbi1d 704 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
2219, 21bibi12d 321 . 2  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
23 oveq2 6120 . . . . . 6  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( C  e.  om ,  C ,  (/) )  +o  D )  =  ( if ( C  e. 
om ,  C ,  (/) )  +o  if ( D  e.  om ,  D ,  (/) ) ) )
2423, 23oveq12d 6130 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( C  e.  om ,  C ,  (/) )  +o  D
)  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
25 id 22 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  D  =  if ( D  e. 
om ,  D ,  (/) ) )
2624, 25oveq12d 6130 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )
2726eqeq2d 2454 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
28 eqeq2 2452 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( B  e.  om ,  B ,  (/) )  =  D  <->  if ( B  e. 
om ,  B ,  (/) )  =  if ( D  e.  om ,  D ,  (/) ) ) )
2928anbi2d 703 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) )
3027, 29bibi12d 321 . 2  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) ) )
31 peano1 6516 . . . 4  |-  (/)  e.  om
3231elimel 3873 . . 3  |-  if ( A  e.  om ,  A ,  (/) )  e. 
om
3331elimel 3873 . . 3  |-  if ( B  e.  om ,  B ,  (/) )  e. 
om
3431elimel 3873 . . 3  |-  if ( C  e.  om ,  C ,  (/) )  e. 
om
3531elimel 3873 . . 3  |-  if ( D  e.  om ,  D ,  (/) )  e. 
om
3632, 33, 34, 35omopthi 7117 . 2  |-  ( ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) )
377, 15, 22, 30, 36dedth4h 3865 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   (/)c0 3658   ifcif 3812  (class class class)co 6112   omcom 6497    +o coa 6938    .o comu 6939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-omul 6946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator