MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopth Structured version   Unicode version

Theorem omopth 7225
Description: An ordered pair theorem for finite integers. Analogous to nn0opthi 12252. (Contributed by Scott Fenton, 1-May-2012.)
Assertion
Ref Expression
omopth  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )

Proof of Theorem omopth
StepHypRef Expression
1 oveq1 6203 . . . . . 6  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  +o  B )  =  ( if ( A  e.  om ,  A ,  (/) )  +o  B
) )
21, 1oveq12d 6214 . . . . 5  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  +o  B
)  .o  ( A  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) ) )
32oveq1d 6211 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B ) )
43eqeq1d 2384 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( A  +o  B )  .o  ( A  +o  B
) )  +o  B
)  =  ( ( ( C  +o  D
)  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
5 eqeq1 2386 . . . 4  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  ( A  =  C  <->  if ( A  e.  om ,  A ,  (/) )  =  C ) )
65anbi1d 702 . . 3  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( A  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) )
74, 6bibi12d 319 . 2  |-  ( A  =  if ( A  e.  om ,  A ,  (/) )  ->  (
( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( A  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) ) ) )
8 oveq2 6204 . . . . . 6  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  +o  B )  =  ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) ) )
98, 8oveq12d 6214 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  +o  B
)  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  =  ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) ) )
10 id 22 . . . . 5  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  B  =  if ( B  e. 
om ,  B ,  (/) ) )
119, 10oveq12d 6214 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )
1211eqeq1d 2384 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D ) ) )
13 eqeq1 2386 . . . 4  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  ( B  =  D  <->  if ( B  e.  om ,  B ,  (/) )  =  D ) )
1413anbi2d 701 . . 3  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
1512, 14bibi12d 319 . 2  |-  ( B  =  if ( B  e.  om ,  B ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  B )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  B  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
16 oveq1 6203 . . . . . 6  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( C  +o  D )  =  ( if ( C  e.  om ,  C ,  (/) )  +o  D
) )
1716, 16oveq12d 6214 . . . . 5  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( C  +o  D
)  .o  ( C  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) ) )
1817oveq1d 6211 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) )
1918eqeq2d 2396 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D ) ) )
20 eqeq2 2397 . . . 4  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  ( if ( A  e.  om ,  A ,  (/) )  =  C  <->  if ( A  e. 
om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) ) ) )
2120anbi1d 702 . . 3  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) )
2219, 21bibi12d 319 . 2  |-  ( C  =  if ( C  e.  om ,  C ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  C  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) ) ) )
23 oveq2 6204 . . . . . 6  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( C  e.  om ,  C ,  (/) )  +o  D )  =  ( if ( C  e. 
om ,  C ,  (/) )  +o  if ( D  e.  om ,  D ,  (/) ) ) )
2423, 23oveq12d 6214 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( C  e.  om ,  C ,  (/) )  +o  D
)  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  =  ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
25 id 22 . . . . 5  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  D  =  if ( D  e. 
om ,  D ,  (/) ) )
2624, 25oveq12d 6214 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )
2726eqeq2d 2396 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( (
( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) ) )
28 eqeq2 2397 . . . 4  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  ( if ( B  e.  om ,  B ,  (/) )  =  D  <->  if ( B  e. 
om ,  B ,  (/) )  =  if ( D  e.  om ,  D ,  (/) ) ) )
2928anbi2d 701 . . 3  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e.  om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) )
3027, 29bibi12d 319 . 2  |-  ( D  =  if ( D  e.  om ,  D ,  (/) )  ->  (
( ( ( ( if ( A  e. 
om ,  A ,  (/) )  +o  if ( B  e.  om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  D )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  D ) )  +o  D )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  D ) )  <->  ( (
( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) ) ) )
31 peano1 6618 . . . 4  |-  (/)  e.  om
3231elimel 3919 . . 3  |-  if ( A  e.  om ,  A ,  (/) )  e. 
om
3331elimel 3919 . . 3  |-  if ( B  e.  om ,  B ,  (/) )  e. 
om
3431elimel 3919 . . 3  |-  if ( C  e.  om ,  C ,  (/) )  e. 
om
3531elimel 3919 . . 3  |-  if ( D  e.  om ,  D ,  (/) )  e. 
om
3632, 33, 34, 35omopthi 7224 . 2  |-  ( ( ( ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  .o  ( if ( A  e.  om ,  A ,  (/) )  +o  if ( B  e. 
om ,  B ,  (/) ) ) )  +o  if ( B  e. 
om ,  B ,  (/) ) )  =  ( ( ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  .o  ( if ( C  e.  om ,  C ,  (/) )  +o  if ( D  e. 
om ,  D ,  (/) ) ) )  +o  if ( D  e. 
om ,  D ,  (/) ) )  <->  ( if ( A  e.  om ,  A ,  (/) )  =  if ( C  e. 
om ,  C ,  (/) )  /\  if ( B  e.  om ,  B ,  (/) )  =  if ( D  e. 
om ,  D ,  (/) ) ) )
377, 15, 22, 30, 36dedth4h 3911 1  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om )
)  ->  ( (
( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  ( ( ( C  +o  D )  .o  ( C  +o  D
) )  +o  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   (/)c0 3711   ifcif 3857  (class class class)co 6196   omcom 6599    +o coa 7045    .o comu 7046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-omul 7053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator