Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlop Structured version   Unicode version

Theorem omlop 35382
Description: An orthomodular lattice is an orthoposet. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
omlop  |-  ( K  e.  OML  ->  K  e.  OP )

Proof of Theorem omlop
StepHypRef Expression
1 omlol 35381 . 2  |-  ( K  e.  OML  ->  K  e.  OL )
2 olop 35355 . 2  |-  ( K  e.  OL  ->  K  e.  OP )
31, 2syl 16 1  |-  ( K  e.  OML  ->  K  e.  OP )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1823   OPcops 35313   OLcol 35315   OMLcoml 35316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-iota 5534  df-fv 5578  df-ov 6273  df-ol 35319  df-oml 35320
This theorem is referenced by:  omllaw2N  35385  omllaw4  35387  cmtcomlemN  35389  cmt2N  35391  cmt3N  35392  cmt4N  35393  cmtbr2N  35394  cmtbr3N  35395  cmtbr4N  35396  lecmtN  35397  omlfh1N  35399  omlfh3N  35400  omlspjN  35402  atlatmstc  35460
  Copyright terms: Public domain W3C validator