Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw4 Structured version   Unicode version

Theorem omllaw4 35093
Description: Orthomodular law equivalent. Remark in [Holland95] p. 223. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw4.b  |-  B  =  ( Base `  K
)
omllaw4.l  |-  .<_  =  ( le `  K )
omllaw4.m  |-  ./\  =  ( meet `  K )
omllaw4.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )

Proof of Theorem omllaw4
StepHypRef Expression
1 simp1 996 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
2 omlop 35088 . . . . 5  |-  ( K  e.  OML  ->  K  e.  OP )
323ad2ant1 1017 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
4 simp3 998 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
5 omllaw4.b . . . . 5  |-  B  =  ( Base `  K
)
6 omllaw4.o . . . . 5  |-  ._|_  =  ( oc `  K )
75, 6opoccl 35041 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
83, 4, 7syl2anc 661 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
9 simp2 997 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
105, 6opoccl 35041 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
113, 9, 10syl2anc 661 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
12 omllaw4.l . . . 4  |-  .<_  =  ( le `  K )
13 eqid 2457 . . . 4  |-  ( join `  K )  =  (
join `  K )
14 omllaw4.m . . . 4  |-  ./\  =  ( meet `  K )
155, 12, 13, 14, 6omllaw 35090 . . 3  |-  ( ( K  e.  OML  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B )  ->  (
(  ._|_  `  Y )  .<_  (  ._|_  `  X )  ->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
161, 8, 11, 15syl3anc 1228 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<_  (  ._|_  `  X
)  ->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
175, 12, 6oplecon3b 35047 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
182, 17syl3an1 1261 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  (  ._|_  `  Y )  .<_  (  ._|_  `  X ) ) )
19 omllat 35089 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
20193ad2ant1 1017 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
215, 14latmcl 15809 . . . . . . 7  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  ./\  Y )  e.  B
)
2220, 11, 4, 21syl3anc 1228 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  Y )  e.  B )
235, 6opoccl 35041 . . . . . 6  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  e.  B
)
243, 22, 23syl2anc 661 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  X )  ./\  Y ) )  e.  B
)
255, 14latmcl 15809 . . . . 5  |-  ( ( K  e.  Lat  /\  (  ._|_  `  ( (  ._|_  `  X )  ./\  Y ) )  e.  B  /\  Y  e.  B
)  ->  ( (  ._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
)  e.  B )
2620, 24, 4, 25syl3anc 1228 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B )
275, 6opcon3b 35043 . . . 4  |-  ( ( K  e.  OP  /\  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  e.  B  /\  X  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
283, 26, 9, 27syl3anc 1228 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) ) ) )
295, 13latjcom 15816 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  (
( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  Y )
) )
3020, 22, 8, 29syl3anc 1228 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  X )  ./\  Y
) ( join `  K
) (  ._|_  `  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  Y
) ) )
31 omlol 35087 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  OL )
32313ad2ant1 1017 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
335, 13, 14, 6oldmm2 35065 . . . . . 6  |-  ( ( K  e.  OL  /\  ( (  ._|_  `  X
)  ./\  Y )  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )
)  =  ( ( (  ._|_  `  X ) 
./\  Y ) (
join `  K )
(  ._|_  `  Y )
) )
3432, 22, 4, 33syl3anc 1228 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( ( (  ._|_  `  X
)  ./\  Y )
( join `  K )
(  ._|_  `  Y )
) )
355, 6opococ 35042 . . . . . . . 8  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
363, 4, 35syl2anc 661 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
3736oveq2d 6312 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) )  =  ( (  ._|_  `  X ) 
./\  Y ) )
3837oveq2d 6312 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) )  =  ( (  ._|_  `  Y ) ( join `  K ) ( ( 
._|_  `  X )  ./\  Y ) ) )
3930, 34, 383eqtr4d 2508 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  ( ( 
._|_  `  ( (  ._|_  `  X )  ./\  Y
) )  ./\  Y
) )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) )
4039eqeq2d 2471 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  =  (  ._|_  `  ( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y ) )  <->  (  ._|_  `  X )  =  ( (  ._|_  `  Y ) ( join `  K
) ( (  ._|_  `  X )  ./\  (  ._|_  `  (  ._|_  `  Y
) ) ) ) ) )
4128, 40bitrd 253 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( (  ._|_  `  ( (  ._|_  `  X
)  ./\  Y )
)  ./\  Y )  =  X  <->  (  ._|_  `  X
)  =  ( ( 
._|_  `  Y ) (
join `  K )
( (  ._|_  `  X
)  ./\  (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
4216, 18, 413imtr4d 268 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( (  ._|_  `  (
(  ._|_  `  X )  ./\  Y ) )  ./\  Y )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1395    e. wcel 1819   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   Basecbs 14644   lecple 14719   occoc 14720   joincjn 15700   meetcmee 15701   Latclat 15802   OPcops 35019   OLcol 35021   OMLcoml 35022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-preset 15684  df-poset 15702  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-lat 15803  df-oposet 35023  df-ol 35025  df-oml 35026
This theorem is referenced by:  poml4N  35799  dihoml4c  37225
  Copyright terms: Public domain W3C validator