Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw3 Structured version   Unicode version

Theorem omllaw3 32263
Description: Orthomodular law equivalent. Theorem 2(ii) of [Kalmbach] p. 22. (pjoml 26768 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
omllaw3.b  |-  B  =  ( Base `  K
)
omllaw3.l  |-  .<_  =  ( le `  K )
omllaw3.m  |-  ./\  =  ( meet `  K )
omllaw3.o  |-  ._|_  =  ( oc `  K )
omllaw3.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
omllaw3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  Y  /\  ( Y  ./\  (  ._|_  `  X )
)  =  .0.  )  ->  X  =  Y ) )

Proof of Theorem omllaw3
StepHypRef Expression
1 oveq2 6286 . . . . . 6  |-  ( ( Y  ./\  (  ._|_  `  X ) )  =  .0.  ->  ( X
( join `  K )
( Y  ./\  (  ._|_  `  X ) ) )  =  ( X ( join `  K
)  .0.  ) )
21adantl 464 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  )  -> 
( X ( join `  K ) ( Y 
./\  (  ._|_  `  X
) ) )  =  ( X ( join `  K )  .0.  )
)
3 omlol 32258 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OL )
4 omllaw3.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
5 eqid 2402 . . . . . . . . 9  |-  ( join `  K )  =  (
join `  K )
6 omllaw3.z . . . . . . . . 9  |-  .0.  =  ( 0. `  K )
74, 5, 6olj01 32243 . . . . . . . 8  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X ( join `  K )  .0.  )  =  X )
83, 7sylan 469 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B )  ->  ( X ( join `  K )  .0.  )  =  X )
983adant3 1017 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( join `  K )  .0.  )  =  X )
109adantr 463 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  )  -> 
( X ( join `  K )  .0.  )  =  X )
112, 10eqtr2d 2444 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  )  ->  X  =  ( X
( join `  K )
( Y  ./\  (  ._|_  `  X ) ) ) )
1211adantrl 714 . . 3  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .<_  Y  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  ) )  ->  X  =  ( X
( join `  K )
( Y  ./\  (  ._|_  `  X ) ) ) )
13 omllaw3.l . . . . . 6  |-  .<_  =  ( le `  K )
14 omllaw3.m . . . . . 6  |-  ./\  =  ( meet `  K )
15 omllaw3.o . . . . . 6  |-  ._|_  =  ( oc `  K )
164, 13, 5, 14, 15omllaw 32261 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  Y  =  ( X
( join `  K )
( Y  ./\  (  ._|_  `  X ) ) ) ) )
1716imp 427 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<_  Y )  ->  Y  =  ( X ( join `  K
) ( Y  ./\  (  ._|_  `  X )
) ) )
1817adantrr 715 . . 3  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .<_  Y  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  ) )  ->  Y  =  ( X
( join `  K )
( Y  ./\  (  ._|_  `  X ) ) ) )
1912, 18eqtr4d 2446 . 2  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  ( X  .<_  Y  /\  ( Y  ./\  (  ._|_  `  X ) )  =  .0.  ) )  ->  X  =  Y )
2019ex 432 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  Y  /\  ( Y  ./\  (  ._|_  `  X )
)  =  .0.  )  ->  X  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   Basecbs 14841   lecple 14916   occoc 14917   joincjn 15897   meetcmee 15898   0.cp0 15991   OLcol 32192   OMLcoml 32193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-preset 15881  df-poset 15899  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-lat 16000  df-oposet 32194  df-ol 32196  df-oml 32197
This theorem is referenced by:  omlfh1N  32276  atlatmstc  32337
  Copyright terms: Public domain W3C validator