Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw2N Structured version   Unicode version

Theorem omllaw2N 35382
Description: Variation of orthomodular law. Definition of OML law in [Kalmbach] p. 22. (pjoml2i 26620 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
omllaw.b  |-  B  =  ( Base `  K
)
omllaw.l  |-  .<_  =  ( le `  K )
omllaw.j  |-  .\/  =  ( join `  K )
omllaw.m  |-  ./\  =  ( meet `  K )
omllaw.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
omllaw2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  Y ) )

Proof of Theorem omllaw2N
StepHypRef Expression
1 omllaw.b . . 3  |-  B  =  ( Base `  K
)
2 omllaw.l . . 3  |-  .<_  =  ( le `  K )
3 omllaw.j . . 3  |-  .\/  =  ( join `  K )
4 omllaw.m . . 3  |-  ./\  =  ( meet `  K )
5 omllaw.o . . 3  |-  ._|_  =  ( oc `  K )
61, 2, 3, 4, 5omllaw 35381 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  Y  =  ( X  .\/  ( Y  ./\  (  ._|_  `  X ) ) ) ) )
7 eqcom 2391 . . 3  |-  ( ( X  .\/  ( ( 
._|_  `  X )  ./\  Y ) )  =  Y  <-> 
Y  =  ( X 
.\/  ( (  ._|_  `  X )  ./\  Y
) ) )
8 omllat 35380 . . . . . . 7  |-  ( K  e.  OML  ->  K  e.  Lat )
983ad2ant1 1015 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
10 omlop 35379 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
111, 5opoccl 35332 . . . . . . . 8  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
1210, 11sylan 469 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
13123adant3 1014 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
14 simp3 996 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
151, 4latmcom 15822 . . . . . 6  |-  ( ( K  e.  Lat  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  ./\  Y )  =  ( Y  ./\  (  ._|_  `  X ) ) )
169, 13, 14, 15syl3anc 1226 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  ./\  Y )  =  ( Y  ./\  (  ._|_  `  X )
) )
1716oveq2d 6212 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  ( X  .\/  ( Y  ./\  (  ._|_  `  X
) ) ) )
1817eqeq2d 2396 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  =  ( X  .\/  ( ( 
._|_  `  X )  ./\  Y ) )  <->  Y  =  ( X  .\/  ( Y 
./\  (  ._|_  `  X
) ) ) ) )
197, 18syl5bb 257 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .\/  ( (  ._|_  `  X
)  ./\  Y )
)  =  Y  <->  Y  =  ( X  .\/  ( Y 
./\  (  ._|_  `  X
) ) ) ) )
206, 19sylibrd 234 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  -> 
( X  .\/  (
(  ._|_  `  X )  ./\  Y ) )  =  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 971    = wceq 1399    e. wcel 1826   class class class wbr 4367   ` cfv 5496  (class class class)co 6196   Basecbs 14634   lecple 14709   occoc 14710   joincjn 15690   meetcmee 15691   Latclat 15792   OPcops 35310   OMLcoml 35313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-glb 15722  df-meet 15724  df-lat 15793  df-oposet 35314  df-ol 35316  df-oml 35317
This theorem is referenced by:  omllaw5N  35385  cmtcomlemN  35386  cmtbr3N  35392
  Copyright terms: Public domain W3C validator