MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlimcl Structured version   Unicode version

Theorem omlimcl 7219
Description: The product of any nonzero ordinal with a limit ordinal is a limit ordinal. Proposition 8.24 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.)
Assertion
Ref Expression
omlimcl  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  Lim  ( A  .o  B ) )

Proof of Theorem omlimcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limelon 4930 . . . 4  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 omcl 7178 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
3 eloni 4877 . . . . 5  |-  ( ( A  .o  B )  e.  On  ->  Ord  ( A  .o  B
) )
42, 3syl 16 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  Ord  ( A  .o  B ) )
51, 4sylan2 472 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  Ord  ( A  .o  B ) )
65adantr 463 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  Ord  ( A  .o  B ) )
7 0ellim 4929 . . . . . . . 8  |-  ( Lim 
B  ->  (/)  e.  B
)
8 n0i 3788 . . . . . . . 8  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
97, 8syl 16 . . . . . . 7  |-  ( Lim 
B  ->  -.  B  =  (/) )
10 n0i 3788 . . . . . . 7  |-  ( (/)  e.  A  ->  -.  A  =  (/) )
119, 10anim12ci 565 . . . . . 6  |-  ( ( Lim  B  /\  (/)  e.  A
)  ->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) )
1211adantll 711 . . . . 5  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  (/) 
e.  A )  -> 
( -.  A  =  (/)  /\  -.  B  =  (/) ) )
1312adantll 711 . . . 4  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) )
14 om00 7216 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  (/)  <->  ( A  =  (/)  \/  B  =  (/) ) ) )
1514notbid 292 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  .o  B )  =  (/) 
<->  -.  ( A  =  (/)  \/  B  =  (/) ) ) )
16 ioran 488 . . . . . . 7  |-  ( -.  ( A  =  (/)  \/  B  =  (/) )  <->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) )
1715, 16syl6bb 261 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  ( A  .o  B )  =  (/) 
<->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
181, 17sylan2 472 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( -.  ( A  .o  B )  =  (/) 
<->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
1918adantr 463 . . . 4  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( -.  ( A  .o  B )  =  (/) 
<->  ( -.  A  =  (/)  /\  -.  B  =  (/) ) ) )
2013, 19mpbird 232 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  -.  ( A  .o  B )  =  (/) )
21 vex 3109 . . . . . . . . . . 11  |-  y  e. 
_V
2221sucid 4946 . . . . . . . . . 10  |-  y  e. 
suc  y
23 omlim 7175 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
24 eqeq1 2458 . . . . . . . . . . . 12  |-  ( ( A  .o  B )  =  suc  y  -> 
( ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x )  <->  suc  y  = 
U_ x  e.  B  ( A  .o  x
) ) )
2524biimpac 484 . . . . . . . . . . 11  |-  ( ( ( A  .o  B
)  =  U_ x  e.  B  ( A  .o  x )  /\  ( A  .o  B )  =  suc  y )  ->  suc  y  =  U_ x  e.  B  ( A  .o  x ) )
2623, 25sylan 469 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  ( A  .o  B )  =  suc  y )  ->  suc  y  =  U_ x  e.  B  ( A  .o  x ) )
2722, 26syl5eleq 2548 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  ( A  .o  B )  =  suc  y )  ->  y  e.  U_ x  e.  B  ( A  .o  x
) )
28 eliun 4320 . . . . . . . . 9  |-  ( y  e.  U_ x  e.  B  ( A  .o  x )  <->  E. x  e.  B  y  e.  ( A  .o  x
) )
2927, 28sylib 196 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  ( A  .o  B )  =  suc  y )  ->  E. x  e.  B  y  e.  ( A  .o  x
) )
3029adantlr 712 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  ( A  .o  B )  =  suc  y )  ->  E. x  e.  B  y  e.  ( A  .o  x
) )
31 onelon 4892 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
321, 31sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  x  e.  On )
33 onnbtwn 4958 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  -.  ( x  e.  B  /\  B  e.  suc  x ) )
34 imnan 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  B  ->  -.  B  e.  suc  x )  <->  -.  (
x  e.  B  /\  B  e.  suc  x ) )
3533, 34sylibr 212 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  (
x  e.  B  ->  -.  B  e.  suc  x ) )
3635com12 31 . . . . . . . . . . . . . . . 16  |-  ( x  e.  B  ->  (
x  e.  On  ->  -.  B  e.  suc  x
) )
3736adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( x  e.  On  ->  -.  B  e.  suc  x ) )
3832, 37mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  -.  B  e.  suc  x )
3938adantll 711 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  x  e.  B
)  ->  -.  B  e.  suc  x )
4039adantlr 712 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  x  e.  B )  ->  -.  B  e.  suc  x )
4140adantr 463 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/) 
e.  A )  /\  x  e.  B )  /\  y  e.  ( A  .o  x ) )  ->  -.  B  e.  suc  x )
42 simpl 455 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  On  /\  x  e.  B )  ->  B  e.  On )
4342, 31jca 530 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  On  /\  x  e.  B )  ->  ( B  e.  On  /\  x  e.  On ) )
441, 43sylan 469 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  C  /\  Lim  B )  /\  x  e.  B )  ->  ( B  e.  On  /\  x  e.  On ) )
4544anim2i 567 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  ( ( B  e.  C  /\  Lim  B
)  /\  x  e.  B ) )  -> 
( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) ) )
4645anassrs 646 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  x  e.  B
)  ->  ( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) ) )
47 omcl 7178 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
48 eloni 4877 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  .o  x )  e.  On  ->  Ord  ( A  .o  x
) )
49 ordsucelsuc 6630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Ord  ( A  .o  x
)  ->  ( y  e.  ( A  .o  x
)  <->  suc  y  e.  suc  ( A  .o  x
) ) )
5048, 49syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  .o  x )  e.  On  ->  (
y  e.  ( A  .o  x )  <->  suc  y  e. 
suc  ( A  .o  x ) ) )
51 oa1suc 7173 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  .o  x )  e.  On  ->  (
( A  .o  x
)  +o  1o )  =  suc  ( A  .o  x ) )
5251eleq2d 2524 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  .o  x )  e.  On  ->  ( suc  y  e.  (
( A  .o  x
)  +o  1o )  <->  suc  y  e.  suc  ( A  .o  x
) ) )
5350, 52bitr4d 256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  .o  x )  e.  On  ->  (
y  e.  ( A  .o  x )  <->  suc  y  e.  ( ( A  .o  x )  +o  1o ) ) )
5447, 53syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( y  e.  ( A  .o  x )  <->  suc  y  e.  (
( A  .o  x
)  +o  1o ) ) )
5554adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( y  e.  ( A  .o  x
)  <->  suc  y  e.  ( ( A  .o  x
)  +o  1o ) ) )
56 eloni 4877 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  e.  On  ->  Ord  A )
57 ordgt0ge1 7139 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( Ord 
A  ->  ( (/)  e.  A  <->  1o  C_  A ) )
5856, 57syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  1o  C_  A
) )
5958adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( (/)  e.  A  <->  1o  C_  A ) )
60 1on 7129 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  1o  e.  On
61 oaword 7190 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( 1o  e.  On  /\  A  e.  On  /\  ( A  .o  x )  e.  On )  ->  ( 1o  C_  A  <->  ( ( A  .o  x )  +o  1o )  C_  (
( A  .o  x
)  +o  A ) ) )
6260, 61mp3an1 1309 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  On  /\  ( A  .o  x
)  e.  On )  ->  ( 1o  C_  A 
<->  ( ( A  .o  x )  +o  1o )  C_  ( ( A  .o  x )  +o  A ) ) )
6347, 62syldan 468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( 1o  C_  A  <->  ( ( A  .o  x
)  +o  1o ) 
C_  ( ( A  .o  x )  +o  A ) ) )
6459, 63bitrd 253 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( (/)  e.  A  <->  ( ( A  .o  x
)  +o  1o ) 
C_  ( ( A  .o  x )  +o  A ) ) )
6564biimpa 482 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  x )  +o  1o )  C_  (
( A  .o  x
)  +o  A ) )
66 omsuc 7168 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x
)  +o  A ) )
6766adantr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x
)  +o  A ) )
6865, 67sseqtr4d 3526 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  x )  +o  1o )  C_  ( A  .o  suc  x ) )
6968sseld 3488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( suc  y  e.  ( ( A  .o  x )  +o  1o )  ->  suc  y  e.  ( A  .o  suc  x
) ) )
7055, 69sylbid 215 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( y  e.  ( A  .o  x
)  ->  suc  y  e.  ( A  .o  suc  x ) ) )
71 eleq1 2526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  .o  B )  =  suc  y  -> 
( ( A  .o  B )  e.  ( A  .o  suc  x
)  <->  suc  y  e.  ( A  .o  suc  x
) ) )
7271biimprd 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  .o  B )  =  suc  y  -> 
( suc  y  e.  ( A  .o  suc  x
)  ->  ( A  .o  B )  e.  ( A  .o  suc  x
) ) )
7370, 72syl9 71 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  suc  y  ->  (
y  e.  ( A  .o  x )  -> 
( A  .o  B
)  e.  ( A  .o  suc  x ) ) ) )
7473com23 78 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  On  /\  x  e.  On )  /\  (/)  e.  A )  ->  ( y  e.  ( A  .o  x
)  ->  ( ( A  .o  B )  =  suc  y  ->  ( A  .o  B )  e.  ( A  .o  suc  x ) ) ) )
7574adantlrl 717 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) )  /\  (/)  e.  A
)  ->  ( y  e.  ( A  .o  x
)  ->  ( ( A  .o  B )  =  suc  y  ->  ( A  .o  B )  e.  ( A  .o  suc  x ) ) ) )
76 sucelon 6625 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  <->  suc  x  e.  On )
77 omord 7209 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  On  /\  suc  x  e.  On  /\  A  e.  On )  ->  ( ( B  e. 
suc  x  /\  (/)  e.  A
)  <->  ( A  .o  B )  e.  ( A  .o  suc  x
) ) )
78 simpl 455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  suc  x  /\  (/)  e.  A )  ->  B  e.  suc  x )
7977, 78syl6bir 229 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  On  /\  suc  x  e.  On  /\  A  e.  On )  ->  ( ( A  .o  B )  e.  ( A  .o  suc  x
)  ->  B  e.  suc  x ) )
8076, 79syl3an2b 1263 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  On  /\  x  e.  On  /\  A  e.  On )  ->  (
( A  .o  B
)  e.  ( A  .o  suc  x )  ->  B  e.  suc  x ) )
81803comr 1202 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  B  e.  On  /\  x  e.  On )  ->  (
( A  .o  B
)  e.  ( A  .o  suc  x )  ->  B  e.  suc  x ) )
82813expb 1195 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) )  ->  ( ( A  .o  B )  e.  ( A  .o  suc  x )  ->  B  e.  suc  x ) )
8382adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) )  /\  (/)  e.  A
)  ->  ( ( A  .o  B )  e.  ( A  .o  suc  x )  ->  B  e.  suc  x ) )
8475, 83syl6d 69 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  On ) )  /\  (/)  e.  A
)  ->  ( y  e.  ( A  .o  x
)  ->  ( ( A  .o  B )  =  suc  y  ->  B  e.  suc  x ) ) )
8546, 84sylan 469 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  x  e.  B )  /\  (/)  e.  A
)  ->  ( y  e.  ( A  .o  x
)  ->  ( ( A  .o  B )  =  suc  y  ->  B  e.  suc  x ) ) )
8685an32s 802 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  x  e.  B )  ->  (
y  e.  ( A  .o  x )  -> 
( ( A  .o  B )  =  suc  y  ->  B  e.  suc  x ) ) )
8786imp 427 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/) 
e.  A )  /\  x  e.  B )  /\  y  e.  ( A  .o  x ) )  ->  ( ( A  .o  B )  =  suc  y  ->  B  e.  suc  x ) )
8841, 87mtod 177 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/) 
e.  A )  /\  x  e.  B )  /\  y  e.  ( A  .o  x ) )  ->  -.  ( A  .o  B )  =  suc  y )
8988exp31 602 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( x  e.  B  ->  ( y  e.  ( A  .o  x
)  ->  -.  ( A  .o  B )  =  suc  y ) ) )
9089rexlimdv 2944 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  ( E. x  e.  B  y  e.  ( A  .o  x
)  ->  -.  ( A  .o  B )  =  suc  y ) )
9190adantr 463 . . . . . . 7  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  ( A  .o  B )  =  suc  y )  ->  ( E. x  e.  B  y  e.  ( A  .o  x )  ->  -.  ( A  .o  B
)  =  suc  y
) )
9230, 91mpd 15 . . . . . 6  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  ( A  .o  B )  =  suc  y )  ->  -.  ( A  .o  B
)  =  suc  y
)
9392pm2.01da 440 . . . . 5  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  -.  ( A  .o  B )  =  suc  y )
9493adantr 463 . . . 4  |-  ( ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A
)  /\  y  e.  On )  ->  -.  ( A  .o  B )  =  suc  y )
9594nrexdv 2910 . . 3  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  -.  E. y  e.  On  ( A  .o  B )  =  suc  y )
96 ioran 488 . . 3  |-  ( -.  ( ( A  .o  B )  =  (/)  \/ 
E. y  e.  On  ( A  .o  B
)  =  suc  y
)  <->  ( -.  ( A  .o  B )  =  (/)  /\  -.  E. y  e.  On  ( A  .o  B )  =  suc  y ) )
9720, 95, 96sylanbrc 662 . 2  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  -.  ( ( A  .o  B )  =  (/)  \/  E. y  e.  On  ( A  .o  B )  =  suc  y ) )
98 dflim3 6655 . 2  |-  ( Lim  ( A  .o  B
)  <->  ( Ord  ( A  .o  B )  /\  -.  ( ( A  .o  B )  =  (/)  \/ 
E. y  e.  On  ( A  .o  B
)  =  suc  y
) ) )
996, 97, 98sylanbrc 662 1  |-  ( ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  /\  (/)  e.  A )  ->  Lim  ( A  .o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   E.wrex 2805    C_ wss 3461   (/)c0 3783   U_ciun 4315   Ord word 4866   Oncon0 4867   Lim wlim 4868   suc csuc 4869  (class class class)co 6270   1oc1o 7115    +o coa 7119    .o comu 7120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127
This theorem is referenced by:  odi  7220  omass  7221
  Copyright terms: Public domain W3C validator