MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlim Structured version   Unicode version

Theorem omlim 6985
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omlim  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem omlim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limelon 4794 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  B  e.  On )
2 simpr 461 . . 3  |-  ( ( B  e.  C  /\  Lim  B )  ->  Lim  B )
31, 2jca 532 . 2  |-  ( ( B  e.  C  /\  Lim  B )  ->  ( B  e.  On  /\  Lim  B ) )
4 rdglim2a 6901 . . . 4  |-  ( ( B  e.  On  /\  Lim  B )  ->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
)
54adantl 466 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
6 omv 6964 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B ) )
7 onelon 4756 . . . . . . . 8  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 omv 6964 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
97, 8sylan2 474 . . . . . . 7  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( A  .o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
109anassrs 648 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( A  .o  x )  =  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) )
1110iuneq2dv 4204 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( A  .o  x
)  =  U_ x  e.  B  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
126, 11eqeq12d 2457 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x )  <->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
) )
1312adantrr 716 . . 3  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( ( A  .o  B )  = 
U_ x  e.  B  ( A  .o  x
)  <->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  U_ x  e.  B  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  x
) ) )
145, 13mpbird 232 . 2  |-  ( ( A  e.  On  /\  ( B  e.  On  /\ 
Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
153, 14sylan2 474 1  |-  ( ( A  e.  On  /\  ( B  e.  C  /\  Lim  B ) )  ->  ( A  .o  B )  =  U_ x  e.  B  ( A  .o  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2984   (/)c0 3649   U_ciun 4183    e. cmpt 4362   Oncon0 4731   Lim wlim 4732   ` cfv 5430  (class class class)co 6103   reccrdg 6877    +o coa 6929    .o comu 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-recs 6844  df-rdg 6878  df-omul 6937
This theorem is referenced by:  omcl  6988  om0r  6991  om1r  6994  omordi  7017  omwordri  7023  omordlim  7028  omlimcl  7029  odi  7030  omass  7031  omeulem1  7033  oeoalem  7047  oeoelem  7049  omabslem  7097  omabs  7098
  Copyright terms: Public domain W3C validator