MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf4 Structured version   Unicode version

Theorem ominf4 8486
Description:  om is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Proof shortened by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ominf4  |-  -.  om  e. FinIV

Proof of Theorem ominf4
StepHypRef Expression
1 id 22 . 2  |-  ( om  e. FinIV  ->  om  e. FinIV )
2 peano1 6500 . . . 4  |-  (/)  e.  om
3 difsnpss 4021 . . . 4  |-  ( (/)  e.  om  <->  ( om  \  { (/)
} )  C.  om )
42, 3mpbi 208 . . 3  |-  ( om 
\  { (/) } ) 
C.  om
5 limom 6496 . . . . 5  |-  Lim  om
65limenpsi 7491 . . . 4  |-  ( om  e. FinIV  ->  om  ~~  ( om 
\  { (/) } ) )
76ensymd 7365 . . 3  |-  ( om  e. FinIV  ->  ( om  \  { (/)
} )  ~~  om )
8 fin4i 8472 . . 3  |-  ( ( ( om  \  { (/)
} )  C.  om  /\  ( om  \  { (/) } )  ~~  om )  ->  -.  om  e. FinIV )
94, 7, 8sylancr 663 . 2  |-  ( om  e. FinIV  ->  -.  om  e. FinIV )
101, 9pm2.65i 173 1  |-  -.  om  e. FinIV
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    e. wcel 1756    \ cdif 3330    C. wpss 3334   (/)c0 3642   {csn 3882   class class class wbr 4297   omcom 6481    ~~ cen 7312  FinIVcfin4 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-om 6482  df-er 7106  df-en 7316  df-dom 7317  df-fin4 8461
This theorem is referenced by:  infpssALT  8487
  Copyright terms: Public domain W3C validator