MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ominf Unicode version

Theorem ominf 7280
Description: The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.)
Assertion
Ref Expression
ominf  |-  -.  om  e.  Fin

Proof of Theorem ominf
StepHypRef Expression
1 isfi 7090 . . 3  |-  ( om  e.  Fin  <->  E. x  e.  om  om  ~~  x
)
2 nnord 4812 . . . . . . . 8  |-  ( x  e.  om  ->  Ord  x )
3 ordom 4813 . . . . . . . 8  |-  Ord  om
4 ordelssne 4568 . . . . . . . 8  |-  ( ( Ord  x  /\  Ord  om )  ->  ( x  e.  om  <->  ( x  C_  om 
/\  x  =/=  om ) ) )
52, 3, 4sylancl 644 . . . . . . 7  |-  ( x  e.  om  ->  (
x  e.  om  <->  ( x  C_ 
om  /\  x  =/=  om ) ) )
65ibi 233 . . . . . 6  |-  ( x  e.  om  ->  (
x  C_  om  /\  x  =/=  om ) )
7 df-pss 3296 . . . . . 6  |-  ( x 
C.  om  <->  ( x  C_  om 
/\  x  =/=  om ) )
86, 7sylibr 204 . . . . 5  |-  ( x  e.  om  ->  x  C.  om )
9 ensym 7115 . . . . 5  |-  ( om 
~~  x  ->  x  ~~  om )
10 pssinf 7278 . . . . 5  |-  ( ( x  C.  om  /\  x  ~~  om )  ->  -.  om  e.  Fin )
118, 9, 10syl2an 464 . . . 4  |-  ( ( x  e.  om  /\  om 
~~  x )  ->  -.  om  e.  Fin )
1211rexlimiva 2785 . . 3  |-  ( E. x  e.  om  om  ~~  x  ->  -.  om  e.  Fin )
131, 12sylbi 188 . 2  |-  ( om  e.  Fin  ->  -.  om  e.  Fin )
14 pm2.01 162 . 2  |-  ( ( om  e.  Fin  ->  -. 
om  e.  Fin )  ->  -.  om  e.  Fin )
1513, 14ax-mp 8 1  |-  -.  om  e.  Fin
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721    =/= wne 2567   E.wrex 2667    C_ wss 3280    C. wpss 3281   class class class wbr 4172   Ord word 4540   omcom 4804    ~~ cen 7065   Fincfn 7068
This theorem is referenced by:  fineqv  7283  nnsdomg  7325  ackbij1lem18  8073  fin23lem21  8175  fin23lem28  8176  fin23lem30  8178  isfin1-2  8221  uzinf  11260  bitsf1  12913  odhash  15163  ufinffr  17914  diophin  26721  diophren  26764  fiphp3d  26770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072
  Copyright terms: Public domain W3C validator