MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem2 Structured version   Unicode version

Theorem omeulem2 7234
Description: Lemma for omeu 7236: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omeulem2  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( B  e.  D  \/  ( B  =  D  /\  C  e.  E ) )  -> 
( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  D )  +o  E ) ) )

Proof of Theorem omeulem2
StepHypRef Expression
1 simp3l 1025 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  D  e.  On )
2 eloni 4878 . . . . . 6  |-  ( D  e.  On  ->  Ord  D )
3 ordsucss 6638 . . . . . 6  |-  ( Ord 
D  ->  ( B  e.  D  ->  suc  B  C_  D ) )
41, 2, 33syl 20 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( B  e.  D  ->  suc  B  C_  D
) )
5 simp2l 1023 . . . . . . 7  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  B  e.  On )
6 suceloni 6633 . . . . . . 7  |-  ( B  e.  On  ->  suc  B  e.  On )
75, 6syl 16 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  suc  B  e.  On )
8 simp1l 1021 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  A  e.  On )
9 simp1r 1022 . . . . . . 7  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  A  =/=  (/) )
10 on0eln0 4923 . . . . . . . 8  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
118, 10syl 16 . . . . . . 7  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( (/)  e.  A  <->  A  =/=  (/) ) )
129, 11mpbird 232 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  (/) 
e.  A )
13 omword 7221 . . . . . 6  |-  ( ( ( suc  B  e.  On  /\  D  e.  On  /\  A  e.  On )  /\  (/)  e.  A
)  ->  ( suc  B 
C_  D  <->  ( A  .o  suc  B )  C_  ( A  .o  D
) ) )
147, 1, 8, 12, 13syl31anc 1232 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( suc  B  C_  D  <->  ( A  .o  suc  B
)  C_  ( A  .o  D ) ) )
154, 14sylibd 214 . . . 4  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( B  e.  D  ->  ( A  .o  suc  B )  C_  ( A  .o  D ) ) )
16 omcl 7188 . . . . . 6  |-  ( ( A  e.  On  /\  D  e.  On )  ->  ( A  .o  D
)  e.  On )
178, 1, 16syl2anc 661 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( A  .o  D
)  e.  On )
18 simp3r 1026 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  E  e.  A )
19 onelon 4893 . . . . . 6  |-  ( ( A  e.  On  /\  E  e.  A )  ->  E  e.  On )
208, 18, 19syl2anc 661 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  E  e.  On )
21 oaword1 7203 . . . . . 6  |-  ( ( ( A  .o  D
)  e.  On  /\  E  e.  On )  ->  ( A  .o  D
)  C_  ( ( A  .o  D )  +o  E ) )
22 sstr 3497 . . . . . . 7  |-  ( ( ( A  .o  suc  B )  C_  ( A  .o  D )  /\  ( A  .o  D )  C_  ( ( A  .o  D )  +o  E
) )  ->  ( A  .o  suc  B ) 
C_  ( ( A  .o  D )  +o  E ) )
2322expcom 435 . . . . . 6  |-  ( ( A  .o  D ) 
C_  ( ( A  .o  D )  +o  E )  ->  (
( A  .o  suc  B )  C_  ( A  .o  D )  ->  ( A  .o  suc  B ) 
C_  ( ( A  .o  D )  +o  E ) ) )
2421, 23syl 16 . . . . 5  |-  ( ( ( A  .o  D
)  e.  On  /\  E  e.  On )  ->  ( ( A  .o  suc  B )  C_  ( A  .o  D )  -> 
( A  .o  suc  B )  C_  ( ( A  .o  D )  +o  E ) ) )
2517, 20, 24syl2anc 661 . . . 4  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( A  .o  suc  B )  C_  ( A  .o  D )  -> 
( A  .o  suc  B )  C_  ( ( A  .o  D )  +o  E ) ) )
2615, 25syld 44 . . 3  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( B  e.  D  ->  ( A  .o  suc  B )  C_  ( ( A  .o  D )  +o  E ) ) )
27 simp2r 1024 . . . . . 6  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  C  e.  A )
28 onelon 4893 . . . . . 6  |-  ( ( A  e.  On  /\  C  e.  A )  ->  C  e.  On )
298, 27, 28syl2anc 661 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  ->  C  e.  On )
30 omcl 7188 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
318, 5, 30syl2anc 661 . . . . 5  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( A  .o  B
)  e.  On )
32 oaord 7198 . . . . . 6  |-  ( ( C  e.  On  /\  A  e.  On  /\  ( A  .o  B )  e.  On )  ->  ( C  e.  A  <->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  B
)  +o  A ) ) )
3332biimpa 484 . . . . 5  |-  ( ( ( C  e.  On  /\  A  e.  On  /\  ( A  .o  B
)  e.  On )  /\  C  e.  A
)  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  B
)  +o  A ) )
3429, 8, 31, 27, 33syl31anc 1232 . . . 4  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  B )  +o  A ) )
35 omsuc 7178 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )
368, 5, 35syl2anc 661 . . . 4  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( A  .o  suc  B )  =  ( ( A  .o  B )  +o  A ) )
3734, 36eleqtrrd 2534 . . 3  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( A  .o  B )  +o  C
)  e.  ( A  .o  suc  B ) )
38 ssel 3483 . . 3  |-  ( ( A  .o  suc  B
)  C_  ( ( A  .o  D )  +o  E )  ->  (
( ( A  .o  B )  +o  C
)  e.  ( A  .o  suc  B )  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) ) )
3926, 37, 38syl6ci 65 . 2  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( B  e.  D  ->  ( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  D )  +o  E ) ) )
40 simpr 461 . . . . 5  |-  ( ( B  =  D  /\  C  e.  E )  ->  C  e.  E )
41 oaord 7198 . . . . 5  |-  ( ( C  e.  On  /\  E  e.  On  /\  ( A  .o  B )  e.  On )  ->  ( C  e.  E  <->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  B
)  +o  E ) ) )
4240, 41syl5ib 219 . . . 4  |-  ( ( C  e.  On  /\  E  e.  On  /\  ( A  .o  B )  e.  On )  ->  (
( B  =  D  /\  C  e.  E
)  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  B
)  +o  E ) ) )
43 oveq2 6289 . . . . . . 7  |-  ( B  =  D  ->  ( A  .o  B )  =  ( A  .o  D
) )
4443oveq1d 6296 . . . . . 6  |-  ( B  =  D  ->  (
( A  .o  B
)  +o  E )  =  ( ( A  .o  D )  +o  E ) )
4544adantr 465 . . . . 5  |-  ( ( B  =  D  /\  C  e.  E )  ->  ( ( A  .o  B )  +o  E
)  =  ( ( A  .o  D )  +o  E ) )
4645eleq2d 2513 . . . 4  |-  ( ( B  =  D  /\  C  e.  E )  ->  ( ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  B
)  +o  E )  <-> 
( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  D )  +o  E ) ) )
4742, 46mpbidi 216 . . 3  |-  ( ( C  e.  On  /\  E  e.  On  /\  ( A  .o  B )  e.  On )  ->  (
( B  =  D  /\  C  e.  E
)  ->  ( ( A  .o  B )  +o  C )  e.  ( ( A  .o  D
)  +o  E ) ) )
4829, 20, 31, 47syl3anc 1229 . 2  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( B  =  D  /\  C  e.  E )  ->  (
( A  .o  B
)  +o  C )  e.  ( ( A  .o  D )  +o  E ) ) )
4939, 48jaod 380 1  |-  ( ( ( A  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  On  /\  C  e.  A )  /\  ( D  e.  On  /\  E  e.  A ) )  -> 
( ( B  e.  D  \/  ( B  =  D  /\  C  e.  E ) )  -> 
( ( A  .o  B )  +o  C
)  e.  ( ( A  .o  D )  +o  E ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638    C_ wss 3461   (/)c0 3770   Ord word 4867   Oncon0 4868   suc csuc 4870  (class class class)co 6281    +o coa 7129    .o comu 7130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-oadd 7136  df-omul 7137
This theorem is referenced by:  omopth2  7235
  Copyright terms: Public domain W3C validator