MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem1 Structured version   Visualization version   Unicode version

Theorem omeulem1 7283
Description: Lemma for omeu 7286: existence part. (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
omeulem1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Distinct variable groups:    x, A, y    x, B, y

Proof of Theorem omeulem1
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1009 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  On )
2 sucelon 6644 . . . . . 6  |-  ( B  e.  On  <->  suc  B  e.  On )
31, 2sylib 200 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B  e.  On )
4 simp1 1008 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  A  e.  On )
5 on0eln0 5478 . . . . . . 7  |-  ( A  e.  On  ->  ( (/) 
e.  A  <->  A  =/=  (/) ) )
65biimpar 488 . . . . . 6  |-  ( ( A  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
763adant2 1027 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (/)  e.  A
)
8 omword2 7275 . . . . 5  |-  ( ( ( suc  B  e.  On  /\  A  e.  On )  /\  (/)  e.  A
)  ->  suc  B  C_  ( A  .o  suc  B
) )
93, 4, 7, 8syl21anc 1267 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  suc  B 
C_  ( A  .o  suc  B ) )
10 sucidg 5501 . . . . 5  |-  ( B  e.  On  ->  B  e.  suc  B )
11 ssel 3426 . . . . 5  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  suc  B  ->  B  e.  ( A  .o  suc  B
) ) )
1210, 11syl5 33 . . . 4  |-  ( suc 
B  C_  ( A  .o  suc  B )  -> 
( B  e.  On  ->  B  e.  ( A  .o  suc  B ) ) )
139, 1, 12sylc 62 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  B  e.  ( A  .o  suc  B ) )
14 suceq 5488 . . . . . 6  |-  ( x  =  B  ->  suc  x  =  suc  B )
1514oveq2d 6306 . . . . 5  |-  ( x  =  B  ->  ( A  .o  suc  x )  =  ( A  .o  suc  B ) )
1615eleq2d 2514 . . . 4  |-  ( x  =  B  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  B
) ) )
1716rspcev 3150 . . 3  |-  ( ( B  e.  On  /\  B  e.  ( A  .o  suc  B ) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x ) )
181, 13, 17syl2anc 667 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  B  e.  ( A  .o  suc  x
) )
19 suceq 5488 . . . . . 6  |-  ( x  =  z  ->  suc  x  =  suc  z )
2019oveq2d 6306 . . . . 5  |-  ( x  =  z  ->  ( A  .o  suc  x )  =  ( A  .o  suc  z ) )
2120eleq2d 2514 . . . 4  |-  ( x  =  z  ->  ( B  e.  ( A  .o  suc  x )  <->  B  e.  ( A  .o  suc  z
) ) )
2221onminex 6634 . . 3  |-  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) ) )
23 vex 3048 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2423elon 5432 . . . . . . . . . . . . . 14  |-  ( x  e.  On  <->  Ord  x )
25 ordzsl 6672 . . . . . . . . . . . . . 14  |-  ( Ord  x  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
2624, 25bitri 253 . . . . . . . . . . . . 13  |-  ( x  e.  On  <->  ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x ) )
27 noel 3735 . . . . . . . . . . . . . . . 16  |-  -.  B  e.  (/)
28 oveq2 6298 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
29 om0x 7221 . . . . . . . . . . . . . . . . . 18  |-  ( A  .o  (/) )  =  (/)
3028, 29syl6eq 2501 . . . . . . . . . . . . . . . . 17  |-  ( x  =  (/)  ->  ( A  .o  x )  =  (/) )
3130eleq2d 2514 . . . . . . . . . . . . . . . 16  |-  ( x  =  (/)  ->  ( B  e.  ( A  .o  x )  <->  B  e.  (/) ) )
3227, 31mtbiri 305 . . . . . . . . . . . . . . 15  |-  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) )
3332a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  (/)  ->  -.  B  e.  ( A  .o  x
) ) )
34 simp3 1010 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  x  =  suc  w )
35 simp2 1009 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )
36 raleq 2987 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z ) ) )
37 vex 3048 . . . . . . . . . . . . . . . . . . . . 21  |-  w  e. 
_V
3837sucid 5502 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
suc  w
39 suceq 5488 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  w  ->  suc  z  =  suc  w )
4039oveq2d 6306 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  w  ->  ( A  .o  suc  z )  =  ( A  .o  suc  w ) )
4140eleq2d 2514 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  w  ->  ( B  e.  ( A  .o  suc  z )  <->  B  e.  ( A  .o  suc  w
) ) )
4241notbid 296 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  w  ->  ( -.  B  e.  ( A  .o  suc  z )  <->  -.  B  e.  ( A  .o  suc  w ) ) )
4342rspcv 3146 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  suc  w  -> 
( A. z  e. 
suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4438, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( A. z  e.  suc  w  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) )
4536, 44syl6bi 232 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  suc  w ) ) )
4634, 35, 45sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  suc  w
) )
47 oveq2 6298 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  suc  w  -> 
( A  .o  x
)  =  ( A  .o  suc  w ) )
4847eleq2d 2514 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  suc  w  -> 
( B  e.  ( A  .o  x )  <-> 
B  e.  ( A  .o  suc  w ) ) )
4948notbid 296 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  suc  w  -> 
( -.  B  e.  ( A  .o  x
)  <->  -.  B  e.  ( A  .o  suc  w
) ) )
5049biimpar 488 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  suc  w  /\  -.  B  e.  ( A  .o  suc  w
) )  ->  -.  B  e.  ( A  .o  x ) )
5134, 46, 50syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  =  suc  w )  ->  -.  B  e.  ( A  .o  x
) )
52513expia 1210 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  =  suc  w  ->  -.  B  e.  ( A  .o  x ) ) )
5352rexlimdvw 2882 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( E. w  e.  On  x  =  suc  w  ->  -.  B  e.  ( A  .o  x
) ) )
54 ralnex 2834 . . . . . . . . . . . . . . . . . 18  |-  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  <->  -.  E. z  e.  x  B  e.  ( A  .o  suc  z
) )
55 simpr 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  A  e.  On )
5623a1i 11 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  x  e.  _V )
57 simpl 459 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  Lim  x )
58 omlim 7235 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  .o  x )  =  U_ z  e.  x  ( A  .o  z ) )
5955, 56, 57, 58syl12anc 1266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A  .o  x )  = 
U_ z  e.  x  ( A  .o  z
) )
6059eleq2d 2514 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  <->  B  e.  U_ z  e.  x  ( A  .o  z ) ) )
61 eliun 4283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  U_ z  e.  x  ( A  .o  z )  <->  E. z  e.  x  B  e.  ( A  .o  z
) )
62 limord 5482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Lim  x  ->  Ord  x )
63623ad2ant1 1029 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  Ord  x )
6463, 24sylibr 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  x  e.  On )
65 simp3 1010 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  x )
66 onelon 5448 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
6764, 65, 66syl2anc 667 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  z  e.  On )
68 suceloni 6640 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  On  ->  suc  z  e.  On )
6967, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  suc  z  e.  On )
70 simp2 1009 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  A  e.  On )
71 sssucid 5500 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  z  C_  suc  z
72 omwordi 7272 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( z  C_  suc  z  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) ) )
7371, 72mpi 20 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  On  /\  suc  z  e.  On  /\  A  e.  On )  ->  ( A  .o  z )  C_  ( A  .o  suc  z ) )
7467, 69, 70, 73syl3anc 1268 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( A  .o  z )  C_  ( A  .o  suc  z
) )
7574sseld 3431 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( Lim  x  /\  A  e.  On  /\  z  e.  x )  ->  ( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z ) ) )
76753expia 1210 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Lim  x  /\  A  e.  On )  ->  (
z  e.  x  -> 
( B  e.  ( A  .o  z )  ->  B  e.  ( A  .o  suc  z
) ) ) )
7776reximdvai 2859 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( E. z  e.  x  B  e.  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7861, 77syl5bi 221 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  U_ z  e.  x  ( A  .o  z )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
7960, 78sylbid 219 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  e.  ( A  .o  x )  ->  E. z  e.  x  B  e.  ( A  .o  suc  z
) ) )
8079con3d 139 . . . . . . . . . . . . . . . . . 18  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( -.  E. z  e.  x  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x ) ) )
8154, 80syl5bi 221 . . . . . . . . . . . . . . . . 17  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  ->  -.  B  e.  ( A  .o  x
) ) )
8281expimpd 608 . . . . . . . . . . . . . . . 16  |-  ( Lim  x  ->  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  -.  B  e.  ( A  .o  x
) ) )
8382com12 32 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
84833ad2antl1 1170 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( Lim  x  ->  -.  B  e.  ( A  .o  x ) ) )
8533, 53, 843jaod 1332 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( ( x  =  (/)  \/  E. w  e.  On  x  =  suc  w  \/  Lim  x )  ->  -.  B  e.  ( A  .o  x
) ) )
8626, 85syl5bi 221 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  ( x  e.  On  ->  -.  B  e.  ( A  .o  x
) ) )
8786impr 625 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  -.  B  e.  ( A  .o  x ) )
88 simpl1 1011 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  A  e.  On )
89 simprr 766 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  x  e.  On )
90 omcl 7238 . . . . . . . . . . . . 13  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
9188, 89, 90syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  e.  On )
92 simpl2 1012 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  B  e.  On )
93 ontri1 5457 . . . . . . . . . . . 12  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  -.  B  e.  ( A  .o  x ) ) )
9491, 92, 93syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  -.  B  e.  ( A  .o  x
) ) )
9587, 94mpbird 236 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  ( A  .o  x )  C_  B )
96 oawordex 7258 . . . . . . . . . . 11  |-  ( ( ( A  .o  x
)  e.  On  /\  B  e.  On )  ->  ( ( A  .o  x )  C_  B  <->  E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B ) )
9791, 92, 96syl2anc 667 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  (
( A  .o  x
)  C_  B  <->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B ) )
9895, 97mpbid 214 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On ) )  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
99983adantr1 1167 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  On  ( ( A  .o  x )  +o  y )  =  B )
100 simp3r 1037 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  =  B )
101 simp21 1041 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( A  .o  suc  x
) )
102 simp11 1038 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  A  e.  On )
103 simp23 1043 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  x  e.  On )
104 omsuc 7228 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x
)  +o  A ) )
105102, 103, 104syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  suc  x )  =  ( ( A  .o  x )  +o  A
) )
106101, 105eleqtrd 2531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  B  e.  ( ( A  .o  x )  +o  A
) )
107100, 106eqeltrd 2529 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) )
108 simp3l 1036 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  On )
109102, 103, 90syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( A  .o  x )  e.  On )
110 oaord 7248 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  A  e.  On  /\  ( A  .o  x )  e.  On )  ->  (
y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
111108, 102, 109, 110syl3anc 1268 . . . . . . . . . . . 12  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  <->  ( ( A  .o  x )  +o  y )  e.  ( ( A  .o  x
)  +o  A ) ) )
112107, 111mpbird 236 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  y  e.  A )
113112, 100jca 535 . . . . . . . . . 10  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  /\  ( y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B ) )  ->  ( y  e.  A  /\  (
( A  .o  x
)  +o  y )  =  B ) )
1141133expia 1210 . . . . . . . . 9  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( (
y  e.  On  /\  ( ( A  .o  x )  +o  y
)  =  B )  ->  ( y  e.  A  /\  ( ( A  .o  x )  +o  y )  =  B ) ) )
115114reximdv2 2858 . . . . . . . 8  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  ( E. y  e.  On  (
( A  .o  x
)  +o  y )  =  B  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
11699, 115mpd 15 . . . . . . 7  |-  ( ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  /\  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )
)  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
117116expcom 437 . . . . . 6  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z )  /\  x  e.  On )  ->  (
( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) )
1181173expia 1210 . . . . 5  |-  ( ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  -> 
( x  e.  On  ->  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B ) ) )
119118com13 83 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  (
x  e.  On  ->  ( ( B  e.  ( A  .o  suc  x
)  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. y  e.  A  ( ( A  .o  x )  +o  y
)  =  B ) ) )
120119reximdvai 2859 . . 3  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  ( B  e.  ( A  .o  suc  x )  /\  A. z  e.  x  -.  B  e.  ( A  .o  suc  z ) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12122, 120syl5 33 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  ( E. x  e.  On  B  e.  ( A  .o  suc  x )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x
)  +o  y )  =  B ) )
12218, 121mpd 15 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  A  =/=  (/) )  ->  E. x  e.  On  E. y  e.  A  ( ( A  .o  x )  +o  y )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    \/ w3o 984    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    C_ wss 3404   (/)c0 3731   U_ciun 4278   Ord word 5422   Oncon0 5423   Lim wlim 5424   suc csuc 5425  (class class class)co 6290    +o coa 7179    .o comu 7180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-omul 7187
This theorem is referenced by:  omeu  7286
  Copyright terms: Public domain W3C validator