MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omcl Structured version   Unicode version

Theorem omcl 7204
Description: Closure law for ordinal multiplication. Proposition 8.16 of [TakeutiZaring] p. 57. (Contributed by NM, 3-Aug-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
omcl  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )

Proof of Theorem omcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6304 . . . 4  |-  ( x  =  (/)  ->  ( A  .o  x )  =  ( A  .o  (/) ) )
21eleq1d 2526 . . 3  |-  ( x  =  (/)  ->  ( ( A  .o  x )  e.  On  <->  ( A  .o  (/) )  e.  On ) )
3 oveq2 6304 . . . 4  |-  ( x  =  y  ->  ( A  .o  x )  =  ( A  .o  y
) )
43eleq1d 2526 . . 3  |-  ( x  =  y  ->  (
( A  .o  x
)  e.  On  <->  ( A  .o  y )  e.  On ) )
5 oveq2 6304 . . . 4  |-  ( x  =  suc  y  -> 
( A  .o  x
)  =  ( A  .o  suc  y ) )
65eleq1d 2526 . . 3  |-  ( x  =  suc  y  -> 
( ( A  .o  x )  e.  On  <->  ( A  .o  suc  y
)  e.  On ) )
7 oveq2 6304 . . . 4  |-  ( x  =  B  ->  ( A  .o  x )  =  ( A  .o  B
) )
87eleq1d 2526 . . 3  |-  ( x  =  B  ->  (
( A  .o  x
)  e.  On  <->  ( A  .o  B )  e.  On ) )
9 om0 7185 . . . 4  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
10 0elon 4940 . . . 4  |-  (/)  e.  On
119, 10syl6eqel 2553 . . 3  |-  ( A  e.  On  ->  ( A  .o  (/) )  e.  On )
12 oacl 7203 . . . . . . 7  |-  ( ( ( A  .o  y
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  y )  +o  A
)  e.  On )
1312expcom 435 . . . . . 6  |-  ( A  e.  On  ->  (
( A  .o  y
)  e.  On  ->  ( ( A  .o  y
)  +o  A )  e.  On ) )
1413adantr 465 . . . . 5  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  .o  y )  e.  On  ->  ( ( A  .o  y )  +o  A
)  e.  On ) )
15 omsuc 7194 . . . . . 6  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( A  .o  suc  y )  =  ( ( A  .o  y
)  +o  A ) )
1615eleq1d 2526 . . . . 5  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  .o  suc  y )  e.  On  <->  ( ( A  .o  y
)  +o  A )  e.  On ) )
1714, 16sylibrd 234 . . . 4  |-  ( ( A  e.  On  /\  y  e.  On )  ->  ( ( A  .o  y )  e.  On  ->  ( A  .o  suc  y )  e.  On ) )
1817expcom 435 . . 3  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( ( A  .o  y
)  e.  On  ->  ( A  .o  suc  y
)  e.  On ) ) )
19 vex 3112 . . . . . 6  |-  x  e. 
_V
20 iunon 7027 . . . . . 6  |-  ( ( x  e.  _V  /\  A. y  e.  x  ( A  .o  y )  e.  On )  ->  U_ y  e.  x  ( A  .o  y
)  e.  On )
2119, 20mpan 670 . . . . 5  |-  ( A. y  e.  x  ( A  .o  y )  e.  On  ->  U_ y  e.  x  ( A  .o  y )  e.  On )
22 omlim 7201 . . . . . . 7  |-  ( ( A  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( A  .o  x )  =  U_ y  e.  x  ( A  .o  y ) )
2319, 22mpanr1 683 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A  .o  x )  = 
U_ y  e.  x  ( A  .o  y
) )
2423eleq1d 2526 . . . . 5  |-  ( ( A  e.  On  /\  Lim  x )  ->  (
( A  .o  x
)  e.  On  <->  U_ y  e.  x  ( A  .o  y )  e.  On ) )
2521, 24syl5ibr 221 . . . 4  |-  ( ( A  e.  On  /\  Lim  x )  ->  ( A. y  e.  x  ( A  .o  y
)  e.  On  ->  ( A  .o  x )  e.  On ) )
2625expcom 435 . . 3  |-  ( Lim  x  ->  ( A  e.  On  ->  ( A. y  e.  x  ( A  .o  y )  e.  On  ->  ( A  .o  x )  e.  On ) ) )
272, 4, 6, 8, 11, 18, 26tfinds3 6698 . 2  |-  ( B  e.  On  ->  ( A  e.  On  ->  ( A  .o  B )  e.  On ) )
2827impcom 430 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   _Vcvv 3109   (/)c0 3793   U_ciun 4332   Oncon0 4887   Lim wlim 4888   suc csuc 4889  (class class class)co 6296    +o coa 7145    .o comu 7146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-oadd 7152  df-omul 7153
This theorem is referenced by:  oecl  7205  omordi  7233  omord2  7234  omcan  7236  omword  7237  omwordri  7239  om00  7242  om00el  7243  omlimcl  7245  odi  7246  omass  7247  oneo  7248  omeulem1  7249  omeulem2  7250  omopth2  7251  oeoelem  7265  oeoe  7266  oeeui  7269  oaabs2  7312  omxpenlem  7637  omxpen  7638  cantnfle  8107  cantnflt  8108  cantnflem1d  8124  cantnflem1  8125  cantnflem3  8127  cantnflem4  8128  cantnfleOLD  8137  cantnfltOLD  8138  cantnflem1dOLD  8147  cantnflem1OLD  8148  cantnflem3OLD  8149  cantnflem4OLD  8150  cnfcomlem  8160  cnfcomlemOLD  8168  xpnum  8349  infxpenc  8412  infxpencOLD  8417  dfac12lem2  8541
  Copyright terms: Public domain W3C validator