MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Unicode version

Theorem omass 7018
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )

Proof of Theorem omass
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6098 . . . . . 6  |-  ( x  =  (/)  ->  ( ( A  .o  B )  .o  x )  =  ( ( A  .o  B )  .o  (/) ) )
2 oveq2 6098 . . . . . . 7  |-  ( x  =  (/)  ->  ( B  .o  x )  =  ( B  .o  (/) ) )
32oveq2d 6106 . . . . . 6  |-  ( x  =  (/)  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  (/) ) ) )
41, 3eqeq12d 2456 . . . . 5  |-  ( x  =  (/)  ->  ( ( ( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) )  <->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) ) )
5 oveq2 6098 . . . . . 6  |-  ( x  =  y  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  y ) )
6 oveq2 6098 . . . . . . 7  |-  ( x  =  y  ->  ( B  .o  x )  =  ( B  .o  y
) )
76oveq2d 6106 . . . . . 6  |-  ( x  =  y  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  y ) ) )
85, 7eqeq12d 2456 . . . . 5  |-  ( x  =  y  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) ) )
9 oveq2 6098 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( A  .o  B )  .o  x
)  =  ( ( A  .o  B )  .o  suc  y ) )
10 oveq2 6098 . . . . . . 7  |-  ( x  =  suc  y  -> 
( B  .o  x
)  =  ( B  .o  suc  y ) )
1110oveq2d 6106 . . . . . 6  |-  ( x  =  suc  y  -> 
( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  suc  y
) ) )
129, 11eqeq12d 2456 . . . . 5  |-  ( x  =  suc  y  -> 
( ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) )  <-> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
13 oveq2 6098 . . . . . 6  |-  ( x  =  C  ->  (
( A  .o  B
)  .o  x )  =  ( ( A  .o  B )  .o  C ) )
14 oveq2 6098 . . . . . . 7  |-  ( x  =  C  ->  ( B  .o  x )  =  ( B  .o  C
) )
1514oveq2d 6106 . . . . . 6  |-  ( x  =  C  ->  ( A  .o  ( B  .o  x ) )  =  ( A  .o  ( B  .o  C ) ) )
1613, 15eqeq12d 2456 . . . . 5  |-  ( x  =  C  ->  (
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) )  <->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) ) )
17 omcl 6975 . . . . . . 7  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  e.  On )
18 om0 6956 . . . . . . 7  |-  ( ( A  .o  B )  e.  On  ->  (
( A  .o  B
)  .o  (/) )  =  (/) )
1917, 18syl 16 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  .o  (/) )  =  (/) )
20 om0 6956 . . . . . . . 8  |-  ( B  e.  On  ->  ( B  .o  (/) )  =  (/) )
2120oveq2d 6106 . . . . . . 7  |-  ( B  e.  On  ->  ( A  .o  ( B  .o  (/) ) )  =  ( A  .o  (/) ) )
22 om0 6956 . . . . . . 7  |-  ( A  e.  On  ->  ( A  .o  (/) )  =  (/) )
2321, 22sylan9eqr 2496 . . . . . 6  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  ( B  .o  (/) ) )  =  (/) )
2419, 23eqtr4d 2477 . . . . 5  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  .o  (/) )  =  ( A  .o  ( B  .o  (/) ) ) )
25 oveq1 6097 . . . . . . . . 9  |-  ( ( ( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  (
( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) )
26 omsuc 6965 . . . . . . . . . . . 12  |-  ( ( ( A  .o  B
)  e.  On  /\  y  e.  On )  ->  ( ( A  .o  B )  .o  suc  y )  =  ( ( ( A  .o  B )  .o  y
)  +o  ( A  .o  B ) ) )
2717, 26sylan 471 . . . . . . . . . . 11  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  y  e.  On )  ->  ( ( A  .o  B )  .o 
suc  y )  =  ( ( ( A  .o  B )  .o  y )  +o  ( A  .o  B ) ) )
28273impa 1182 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( A  .o  B
)  .o  suc  y
)  =  ( ( ( A  .o  B
)  .o  y )  +o  ( A  .o  B ) ) )
29 omsuc 6965 . . . . . . . . . . . . 13  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y
)  +o  B ) )
30293adant1 1006 . . . . . . . . . . . 12  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( B  .o  suc  y )  =  ( ( B  .o  y )  +o  B ) )
3130oveq2d 6106 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( A  .o  (
( B  .o  y
)  +o  B ) ) )
32 omcl 6975 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  .o  y
)  e.  On )
33 odi 7017 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  ( B  .o  y
)  e.  On  /\  B  e.  On )  ->  ( A  .o  (
( B  .o  y
)  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
3432, 33syl3an2 1252 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  y  e.  On )  /\  B  e.  On )  ->  ( A  .o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) )
35343exp 1186 . . . . . . . . . . . . . . 15  |-  ( A  e.  On  ->  (
( B  e.  On  /\  y  e.  On )  ->  ( B  e.  On  ->  ( A  .o  ( ( B  .o  y )  +o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) ) )
3635expd 436 . . . . . . . . . . . . . 14  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( B  e.  On  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3736com34 83 . . . . . . . . . . . . 13  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) ) )
3837pm2.43d 48 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B
) ) ) ) )
39383imp 1181 . . . . . . . . . . 11  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  .o  ( ( B  .o  y )  +o  B ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4031, 39eqtrd 2474 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  ( A  .o  ( B  .o  suc  y ) )  =  ( ( A  .o  ( B  .o  y
) )  +o  ( A  .o  B ) ) )
4128, 40eqeq12d 2456 . . . . . . . . 9  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) )  <->  ( ( ( A  .o  B )  .o  y )  +o  ( A  .o  B
) )  =  ( ( A  .o  ( B  .o  y ) )  +o  ( A  .o  B ) ) ) )
4225, 41syl5ibr 221 . . . . . . . 8  |-  ( ( A  e.  On  /\  B  e.  On  /\  y  e.  On )  ->  (
( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) )
43423exp 1186 . . . . . . 7  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( y  e.  On  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4443com3r 79 . . . . . 6  |-  ( y  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) ) )
4544impd 431 . . . . 5  |-  ( y  e.  On  ->  (
( A  e.  On  /\  B  e.  On )  ->  ( ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o 
suc  y )  =  ( A  .o  ( B  .o  suc  y ) ) ) ) )
4617ancoms 453 . . . . . . . . . . . . . 14  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( A  .o  B
)  e.  On )
47 vex 2974 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
48 omlim 6972 . . . . . . . . . . . . . . 15  |-  ( ( ( A  .o  B
)  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( ( A  .o  B )  .o  x )  =  U_ y  e.  x  (
( A  .o  B
)  .o  y ) )
4947, 48mpanr1 683 . . . . . . . . . . . . . 14  |-  ( ( ( A  .o  B
)  e.  On  /\  Lim  x )  ->  (
( A  .o  B
)  .o  x )  =  U_ y  e.  x  ( ( A  .o  B )  .o  y ) )
5046, 49sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  On  /\  A  e.  On )  /\  Lim  x )  ->  ( ( A  .o  B )  .o  x )  =  U_ y  e.  x  (
( A  .o  B
)  .o  y ) )
5150an32s 802 . . . . . . . . . . . 12  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( ( A  .o  B )  .o  x
)  =  U_ y  e.  x  ( ( A  .o  B )  .o  y ) )
5251ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  On  /\  Lim  x )  /\  A  e.  On )  /\  (/)  e.  B
)  /\  A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) )  ->  ( ( A  .o  B )  .o  x )  =  U_ y  e.  x  (
( A  .o  B
)  .o  y ) )
53 iuneq2 4186 . . . . . . . . . . . 12  |-  ( A. y  e.  x  (
( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  U_ y  e.  x  ( ( A  .o  B )  .o  y )  =  U_ y  e.  x  ( A  .o  ( B  .o  y ) ) )
54 limelon 4781 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
5547, 54mpan 670 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Lim  x  ->  x  e.  On )
5655anim1i 568 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Lim  x  /\  B  e.  On )  ->  (
x  e.  On  /\  B  e.  On )
)
5756ancoms 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
x  e.  On  /\  B  e.  On )
)
58 omordi 7004 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  e.  On  /\  B  e.  On )  /\  (/)  e.  B )  ->  ( y  e.  x  ->  ( B  .o  y )  e.  ( B  .o  x ) ) )
5957, 58sylan 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  -> 
( y  e.  x  ->  ( B  .o  y
)  e.  ( B  .o  x ) ) )
60 ssid 3374 . . . . . . . . . . . . . . . . . . 19  |-  ( A  .o  ( B  .o  y ) )  C_  ( A  .o  ( B  .o  y ) )
61 oveq2 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  =  ( B  .o  y )  ->  ( A  .o  z )  =  ( A  .o  ( B  .o  y ) ) )
6261sseq2d 3383 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  ( B  .o  y )  ->  (
( A  .o  ( B  .o  y ) ) 
C_  ( A  .o  z )  <->  ( A  .o  ( B  .o  y
) )  C_  ( A  .o  ( B  .o  y ) ) ) )
6362rspcev 3072 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  .o  y
)  e.  ( B  .o  x )  /\  ( A  .o  ( B  .o  y ) ) 
C_  ( A  .o  ( B  .o  y
) ) )  ->  E. z  e.  ( B  .o  x ) ( A  .o  ( B  .o  y ) ) 
C_  ( A  .o  z ) )
6460, 63mpan2 671 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  .o  y )  e.  ( B  .o  x )  ->  E. z  e.  ( B  .o  x
) ( A  .o  ( B  .o  y
) )  C_  ( A  .o  z ) )
6559, 64syl6 33 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  -> 
( y  e.  x  ->  E. z  e.  ( B  .o  x ) ( A  .o  ( B  .o  y ) ) 
C_  ( A  .o  z ) ) )
6665ralrimiv 2797 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  ->  A. y  e.  x  E. z  e.  ( B  .o  x ) ( A  .o  ( B  .o  y ) ) 
C_  ( A  .o  z ) )
67 iunss2 4214 . . . . . . . . . . . . . . . 16  |-  ( A. y  e.  x  E. z  e.  ( B  .o  x ) ( A  .o  ( B  .o  y ) )  C_  ( A  .o  z
)  ->  U_ y  e.  x  ( A  .o  ( B  .o  y
) )  C_  U_ z  e.  ( B  .o  x
) ( A  .o  z ) )
6866, 67syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  ->  U_ y  e.  x  ( A  .o  ( B  .o  y ) ) 
C_  U_ z  e.  ( B  .o  x ) ( A  .o  z
) )
6968adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  (/)  e.  B
)  ->  U_ y  e.  x  ( A  .o  ( B  .o  y
) )  C_  U_ z  e.  ( B  .o  x
) ( A  .o  z ) )
70 omcl 6975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  On  /\  x  e.  On )  ->  ( B  .o  x
)  e.  On )
7155, 70sylan2 474 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  On  /\  Lim  x )  ->  ( B  .o  x )  e.  On )
72 onelon 4743 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  .o  x
)  e.  On  /\  z  e.  ( B  .o  x ) )  -> 
z  e.  On )
7371, 72sylan 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  z  e.  ( B  .o  x ) )  -> 
z  e.  On )
7473adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  z  e.  ( B  .o  x
) )  ->  z  e.  On )
75 omordlim 7015 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  z  e.  ( B  .o  x ) )  ->  E. y  e.  x  z  e.  ( B  .o  y
) )
7675ex 434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( z  e.  ( B  .o  x
)  ->  E. y  e.  x  z  e.  ( B  .o  y
) ) )
7747, 76mpanr1 683 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( B  e.  On  /\  Lim  x )  ->  (
z  e.  ( B  .o  x )  ->  E. y  e.  x  z  e.  ( B  .o  y ) ) )
7877ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  /\  A  e.  On )  ->  ( z  e.  ( B  .o  x
)  ->  E. y  e.  x  z  e.  ( B  .o  y
) ) )
79 onelon 4743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
8055, 79sylan 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Lim  x  /\  y  e.  x )  ->  y  e.  On )
8180, 32sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e.  On  /\  ( Lim  x  /\  y  e.  x ) )  -> 
( B  .o  y
)  e.  On )
82 onelss 4760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( B  .o  y )  e.  On  ->  (
z  e.  ( B  .o  y )  -> 
z  C_  ( B  .o  y ) ) )
83823ad2ant2 1010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  On  /\  ( B  .o  y
)  e.  On  /\  A  e.  On )  ->  ( z  e.  ( B  .o  y )  ->  z  C_  ( B  .o  y ) ) )
84 omwordi 7009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( z  e.  On  /\  ( B  .o  y
)  e.  On  /\  A  e.  On )  ->  ( z  C_  ( B  .o  y )  -> 
( A  .o  z
)  C_  ( A  .o  ( B  .o  y
) ) ) )
8583, 84syld 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  On  /\  ( B  .o  y
)  e.  On  /\  A  e.  On )  ->  ( z  e.  ( B  .o  y )  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) )
86853exp 1186 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( z  e.  On  ->  (
( B  .o  y
)  e.  On  ->  ( A  e.  On  ->  ( z  e.  ( B  .o  y )  -> 
( A  .o  z
)  C_  ( A  .o  ( B  .o  y
) ) ) ) ) )
8781, 86syl5 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( z  e.  On  ->  (
( B  e.  On  /\  ( Lim  x  /\  y  e.  x )
)  ->  ( A  e.  On  ->  ( z  e.  ( B  .o  y
)  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) ) ) )
8887exp4d 609 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  On  ->  ( B  e.  On  ->  ( Lim  x  ->  (
y  e.  x  -> 
( A  e.  On  ->  ( z  e.  ( B  .o  y )  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) ) ) ) ) )
8988imp32 433 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  ->  ( y  e.  x  ->  ( A  e.  On  ->  ( z  e.  ( B  .o  y
)  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) ) ) )
9089com23 78 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  ->  ( A  e.  On  ->  ( y  e.  x  ->  ( z  e.  ( B  .o  y )  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) ) ) )
9190imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  /\  A  e.  On )  ->  ( y  e.  x  ->  ( z  e.  ( B  .o  y
)  ->  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) ) )
9291reximdvai 2825 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  /\  A  e.  On )  ->  ( E. y  e.  x  z  e.  ( B  .o  y
)  ->  E. y  e.  x  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) )
9378, 92syld 44 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( z  e.  On  /\  ( B  e.  On  /\ 
Lim  x ) )  /\  A  e.  On )  ->  ( z  e.  ( B  .o  x
)  ->  E. y  e.  x  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) )
9493exp31 604 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  On  ->  (
( B  e.  On  /\ 
Lim  x )  -> 
( A  e.  On  ->  ( z  e.  ( B  .o  x )  ->  E. y  e.  x  ( A  .o  z
)  C_  ( A  .o  ( B  .o  y
) ) ) ) ) )
9594imp4c 591 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  On  ->  (
( ( ( B  e.  On  /\  Lim  x )  /\  A  e.  On )  /\  z  e.  ( B  .o  x
) )  ->  E. y  e.  x  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) ) )
9674, 95mpcom 36 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  z  e.  ( B  .o  x
) )  ->  E. y  e.  x  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) ) )
9796ralrimiva 2798 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  A. z  e.  ( B  .o  x ) E. y  e.  x  ( A  .o  z
)  C_  ( A  .o  ( B  .o  y
) ) )
98 iunss2 4214 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  ( B  .o  x ) E. y  e.  x  ( A  .o  z )  C_  ( A  .o  ( B  .o  y ) )  ->  U_ z  e.  ( B  .o  x ) ( A  .o  z ) 
C_  U_ y  e.  x  ( A  .o  ( B  .o  y ) ) )
9997, 98syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  U_ z  e.  ( B  .o  x ) ( A  .o  z
)  C_  U_ y  e.  x  ( A  .o  ( B  .o  y
) ) )
10099adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  (/)  e.  B
)  ->  U_ z  e.  ( B  .o  x
) ( A  .o  z )  C_  U_ y  e.  x  ( A  .o  ( B  .o  y
) ) )
10169, 100eqssd 3372 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  (/)  e.  B
)  ->  U_ y  e.  x  ( A  .o  ( B  .o  y
) )  =  U_ z  e.  ( B  .o  x ) ( A  .o  z ) )
102 omlimcl 7016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  /\  (/)  e.  B )  ->  Lim  ( B  .o  x ) )
10347, 102mpanlr1 686 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  (/) 
e.  B )  ->  Lim  ( B  .o  x
) )
104 ovex 6115 . . . . . . . . . . . . . . . . 17  |-  ( B  .o  x )  e. 
_V
105 omlim 6972 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  ( ( B  .o  x )  e.  _V  /\ 
Lim  ( B  .o  x ) ) )  ->  ( A  .o  ( B  .o  x
) )  =  U_ z  e.  ( B  .o  x ) ( A  .o  z ) )
106104, 105mpanr1 683 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  On  /\  Lim  ( B  .o  x
) )  ->  ( A  .o  ( B  .o  x ) )  = 
U_ z  e.  ( B  .o  x ) ( A  .o  z
) )
107103, 106sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  On  /\  ( ( B  e.  On  /\  Lim  x
)  /\  (/)  e.  B
) )  ->  ( A  .o  ( B  .o  x ) )  = 
U_ z  e.  ( B  .o  x ) ( A  .o  z
) )
108107ancoms 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  (/)  e.  B
)  /\  A  e.  On )  ->  ( A  .o  ( B  .o  x ) )  = 
U_ z  e.  ( B  .o  x ) ( A  .o  z
) )
109108an32s 802 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  (/)  e.  B
)  ->  ( A  .o  ( B  .o  x
) )  =  U_ z  e.  ( B  .o  x ) ( A  .o  z ) )
110101, 109eqtr4d 2477 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  On  /\  Lim  x
)  /\  A  e.  On )  /\  (/)  e.  B
)  ->  U_ y  e.  x  ( A  .o  ( B  .o  y
) )  =  ( A  .o  ( B  .o  x ) ) )
11153, 110sylan9eqr 2496 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  On  /\  Lim  x )  /\  A  e.  On )  /\  (/)  e.  B
)  /\  A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) )  ->  U_ y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  x ) ) )
11252, 111eqtrd 2474 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  On  /\  Lim  x )  /\  A  e.  On )  /\  (/)  e.  B
)  /\  A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) ) )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) )
113112exp31 604 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( (/)  e.  B  ->  ( A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) ) ) )
114 eloni 4728 . . . . . . . . . . . . 13  |-  ( B  e.  On  ->  Ord  B )
115 ord0eln0 4772 . . . . . . . . . . . . . 14  |-  ( Ord 
B  ->  ( (/)  e.  B  <->  B  =/=  (/) ) )
116115necon2bbid 2668 . . . . . . . . . . . . 13  |-  ( Ord 
B  ->  ( B  =  (/)  <->  -.  (/)  e.  B
) )
117114, 116syl 16 . . . . . . . . . . . 12  |-  ( B  e.  On  ->  ( B  =  (/)  <->  -.  (/)  e.  B
) )
118117ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( B  =  (/)  <->  -.  (/) 
e.  B ) )
119 oveq2 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  (/)  ->  ( A  .o  B )  =  ( A  .o  (/) ) )
120119, 22sylan9eqr 2496 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  On  /\  B  =  (/) )  -> 
( A  .o  B
)  =  (/) )
121120oveq1d 6105 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  B  =  (/) )  -> 
( ( A  .o  B )  .o  x
)  =  ( (/)  .o  x ) )
122 om0r 6978 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  On  ->  ( (/) 
.o  x )  =  (/) )
123121, 122sylan9eqr 2496 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  On  /\  ( A  e.  On  /\  B  =  (/) ) )  ->  ( ( A  .o  B )  .o  x )  =  (/) )
124123anassrs 648 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  A  e.  On )  /\  B  =  (/) )  ->  ( ( A  .o  B )  .o  x )  =  (/) )
125 oveq1 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  (/)  ->  ( B  .o  x )  =  ( (/)  .o  x
) )
126125, 122sylan9eqr 2496 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  /\  B  =  (/) )  -> 
( B  .o  x
)  =  (/) )
127126oveq2d 6106 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  =  (/) )  -> 
( A  .o  ( B  .o  x ) )  =  ( A  .o  (/) ) )
128127, 22sylan9eq 2494 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  =  (/) )  /\  A  e.  On )  ->  ( A  .o  ( B  .o  x ) )  =  (/) )
129128an32s 802 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  On  /\  A  e.  On )  /\  B  =  (/) )  ->  ( A  .o  ( B  .o  x
) )  =  (/) )
130124, 129eqtr4d 2477 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\  A  e.  On )  /\  B  =  (/) )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) )
131130ex 434 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  A  e.  On )  ->  ( B  =  (/)  ->  ( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) )
13255, 131sylan 471 . . . . . . . . . . . 12  |-  ( ( Lim  x  /\  A  e.  On )  ->  ( B  =  (/)  ->  (
( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) ) ) )
133132adantll 713 . . . . . . . . . . 11  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( B  =  (/)  ->  ( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) )
134118, 133sylbird 235 . . . . . . . . . 10  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( -.  (/)  e.  B  ->  ( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) )
135134a1dd 46 . . . . . . . . 9  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( -.  (/)  e.  B  ->  ( A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) ) ) )
136113, 135pm2.61d 158 . . . . . . . 8  |-  ( ( ( B  e.  On  /\ 
Lim  x )  /\  A  e.  On )  ->  ( A. y  e.  x  ( ( A  .o  B )  .o  y )  =  ( A  .o  ( B  .o  y ) )  ->  ( ( A  .o  B )  .o  x )  =  ( A  .o  ( B  .o  x ) ) ) )
137136exp31 604 . . . . . . 7  |-  ( B  e.  On  ->  ( Lim  x  ->  ( A  e.  On  ->  ( A. y  e.  x  (
( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  (
( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) ) ) ) ) )
138137com3l 81 . . . . . 6  |-  ( Lim  x  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( A. y  e.  x  (
( A  .o  B
)  .o  y )  =  ( A  .o  ( B  .o  y
) )  ->  (
( A  .o  B
)  .o  x )  =  ( A  .o  ( B  .o  x
) ) ) ) ) )
139138impd 431 . . . . 5  |-  ( Lim  x  ->  ( ( A  e.  On  /\  B  e.  On )  ->  ( A. y  e.  x  ( ( A  .o  B )  .o  y
)  =  ( A  .o  ( B  .o  y ) )  -> 
( ( A  .o  B )  .o  x
)  =  ( A  .o  ( B  .o  x ) ) ) ) )
1404, 8, 12, 16, 24, 45, 139tfinds3 6474 . . . 4  |-  ( C  e.  On  ->  (
( A  e.  On  /\  B  e.  On )  ->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) ) )
141140expd 436 . . 3  |-  ( C  e.  On  ->  ( A  e.  On  ->  ( B  e.  On  ->  ( ( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
142141com3l 81 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( C  e.  On  ->  ( ( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) ) ) )
1431423imp 1181 1  |-  ( ( A  e.  On  /\  B  e.  On  /\  C  e.  On )  ->  (
( A  .o  B
)  .o  C )  =  ( A  .o  ( B  .o  C
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715   _Vcvv 2971    C_ wss 3327   (/)c0 3636   U_ciun 4170   Ord word 4717   Oncon0 4718   Lim wlim 4719   suc csuc 4720  (class class class)co 6090    +o coa 6916    .o comu 6917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-omul 6924
This theorem is referenced by:  oeoalem  7034  omabs  7085
  Copyright terms: Public domain W3C validator