MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Unicode version

Theorem omabs 7296
Description: Ordinal multiplication is also absorbed by powers of  om. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )

Proof of Theorem omabs
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2540 . . . . . . . 8  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
2 oveq2 6292 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( om 
^o  x )  =  ( om  ^o  (/) ) )
32oveq2d 6300 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  (/) ) ) )
43, 2eqeq12d 2489 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
51, 4imbi12d 320 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
(/)  e.  x  ->  ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) ) )
6 eleq2 2540 . . . . . . . 8  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
7 oveq2 6292 . . . . . . . . . 10  |-  ( x  =  y  ->  ( om  ^o  x )  =  ( om  ^o  y
) )
87oveq2d 6300 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  y ) ) )
98, 7eqeq12d 2489 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  y
) )  =  ( om  ^o  y ) ) )
106, 9imbi12d 320 . . . . . . 7  |-  ( x  =  y  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) ) ) )
11 eleq2 2540 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
12 oveq2 6292 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( om  ^o  x
)  =  ( om 
^o  suc  y )
)
1312oveq2d 6300 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  suc  y
) ) )
1413, 12eqeq12d 2489 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x )  <->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
1511, 14imbi12d 320 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y
) )  =  ( om  ^o  suc  y
) ) ) )
16 eleq2 2540 . . . . . . . 8  |-  ( x  =  B  ->  ( (/) 
e.  x  <->  (/)  e.  B
) )
17 oveq2 6292 . . . . . . . . . 10  |-  ( x  =  B  ->  ( om  ^o  x )  =  ( om  ^o  B
) )
1817oveq2d 6300 . . . . . . . . 9  |-  ( x  =  B  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  B ) ) )
1918, 17eqeq12d 2489 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) ) )
2016, 19imbi12d 320 . . . . . . 7  |-  ( x  =  B  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
21 noel 3789 . . . . . . . . 9  |-  -.  (/)  e.  (/)
2221pm2.21i 131 . . . . . . . 8  |-  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) )
2322a1i 11 . . . . . . 7  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
24 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  om  e.  On )
25 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  om )
26 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  (/)  e.  A
)
27 omabslem 7295 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  A  e.  om  /\  (/)  e.  A
)  ->  ( A  .o  om )  =  om )
2824, 25, 26, 27syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  om )  =  om )
2928adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  om )  =  om )
30 suceq 4943 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
31 df-1o 7130 . . . . . . . . . . . . . . . . . 18  |-  1o  =  suc  (/)
3230, 31syl6eqr 2526 . . . . . . . . . . . . . . . . 17  |-  ( y  =  (/)  ->  suc  y  =  1o )
3332oveq2d 6300 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  ( om 
^o  suc  y )  =  ( om  ^o  1o ) )
34 oe1 7193 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  On  ->  ( om  ^o  1o )  =  om )
3534ad2antrl 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  1o )  =  om )
3633, 35sylan9eqr 2530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( om  ^o  suc  y )  =  om )
3736oveq2d 6300 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  om ) )
3829, 37, 363eqtr4d 2518 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
)
3938ex 434 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
4039a1dd 46 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
41 oveq1 6291 . . . . . . . . . . . . . 14  |-  ( ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( ( om  ^o  y )  .o  om ) )
42 oesuc 7177 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  suc  y )  =  ( ( om  ^o  y
)  .o  om )
)
4342adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o 
suc  y )  =  ( ( om  ^o  y )  .o  om ) )
4443oveq2d 6300 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
45 nnon 6690 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  om  ->  A  e.  On )
4645ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  On )
47 oecl 7187 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  y
)  e.  On )
4847adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  y )  e.  On )
49 omass 7229 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  ( om  ^o  y )  e.  On  /\  om  e.  On )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
5046, 48, 24, 49syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( A  .o  ( ( om  ^o  y )  .o  om ) ) )
5144, 50eqtr4d 2511 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( ( A  .o  ( om  ^o  y ) )  .o  om )
)
5251, 43eqeq12d 2489 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y )  <->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( ( om  ^o  y
)  .o  om )
) )
5341, 52syl5ibr 221 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
5453imim2d 52 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
5554com23 78 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( (/)  e.  y  ->  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
56 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  y  e.  On )
57 on0eqel 4995 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
y  =  (/)  \/  (/)  e.  y ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  \/  (/)  e.  y ) )
5940, 55, 58mpjaod 381 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
6059a1dd 46 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  suc  y  ->  ( A  .o  ( om 
^o  suc  y )
)  =  ( om 
^o  suc  y )
) ) )
6160anassrs 648 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  y  e.  On )  ->  (
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) )
6261expcom 435 . . . . . . 7  |-  ( y  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) ) )
6345ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A  e.  On )
64 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  On )
65 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  Lim  x )
66 vex 3116 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
6765, 66jctil 537 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
68 limelon 4941 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
6967, 68syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  x  e.  On )
70 oecl 7187 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  x  e.  On )  ->  ( om  ^o  x
)  e.  On )
7164, 69, 70syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( om  ^o  x
)  e.  On )
7271adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
73 1onn 7288 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  om
7473a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  1o  e.  om )
75 ondif2 7152 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  ( On  \  2o )  <->  ( om  e.  On  /\  1o  e.  om ) )
7664, 74, 75sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  ( On  \  2o ) )
7776adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
7867adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
79 oelimcl 7249 . . . . . . . . . . . . . . 15  |-  ( ( om  e.  ( On 
\  2o )  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  ( om  ^o  x ) )
8077, 78, 79syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  Lim  ( om  ^o  x
) )
81 omlim 7183 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( ( om  ^o  x )  e.  On  /\ 
Lim  ( om  ^o  x ) ) )  ->  ( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
8263, 72, 80, 81syl12anc 1226 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
83 simplrl 759 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  On )
84 oelim2 7244 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( om  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( om  ^o  x )  =  U_ y  e.  ( x  \  1o ) ( om 
^o  y ) )
8583, 78, 84syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  =  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) )
8685eleq2d 2537 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <-> 
z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) ) )
87 eliun 4330 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) )
8886, 87syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  (
x  \  1o )
z  e.  ( om 
^o  y ) ) )
8969adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  x  e.  On )
90 anass 649 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  <->  ( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y
) ) ) )
91 onelon 4903 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
92 on0eln0 4933 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  ( (/) 
e.  y  <->  y  =/=  (/) ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( (/)  e.  y  <->  y  =/=  (/) ) )
9493pm5.32da 641 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
( y  e.  x  /\  y  =/=  (/) ) ) )
95 dif1o 7150 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( x  \  1o )  <->  ( y  e.  x  /\  y  =/=  (/) ) )
9694, 95syl6bbr 263 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
y  e.  ( x 
\  1o ) ) )
9796anbi1d 704 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (
( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y
) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9890, 97syl5bbr 259 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  (
( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9998rexbidv2 2969 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  ( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) ) )
10089, 99syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om 
^o  y ) ) )
10188, 100bitr4d 256 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
102 r19.29 2997 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. y  e.  x  ( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  E. y  e.  x  (
(/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
103 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) ) )
104103imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  (/) 
e.  y )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
105104anim1i 568 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
106105anasss 647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
10771ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
108 eloni 4888 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( om  ^o  x )  e.  On  ->  Ord  ( om  ^o  x ) )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  Ord  ( om  ^o  x
) )
110 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  ( om 
^o  y ) )
11164ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  On )
11269ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  x  e.  On )
113 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  x )
114112, 113, 91syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  On )
115111, 114, 47syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  On )
116 onelon 4903 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( om  ^o  y
)  e.  On  /\  z  e.  ( om  ^o  y ) )  -> 
z  e.  On )
117115, 110, 116syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  On )
11845ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  A  e.  On )
119118ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  A  e.  On )
120 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  (/) 
e.  A )
121120ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
122 omord2 7216 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( z  e.  On  /\  ( om  ^o  y
)  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  e.  ( om  ^o  y
)  <->  ( A  .o  z )  e.  ( A  .o  ( om 
^o  y ) ) ) )
123117, 115, 119, 121, 122syl31anc 1231 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  y )  <-> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) ) )
124110, 123mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) )
125 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
126124, 125eleqtrd 2557 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  y ) )
12776ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
128 oeord 7237 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  On  /\  x  e.  On  /\  om  e.  ( On  \  2o ) )  ->  (
y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
129114, 112, 127, 128syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
130113, 129mpbid 210 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  ( om 
^o  x ) )
131 ontr1 4924 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( om  ^o  x )  e.  On  ->  (
( ( A  .o  z )  e.  ( om  ^o  y )  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
132107, 131syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( ( ( A  .o  z )  e.  ( om  ^o  y
)  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
133126, 130, 132mp2and 679 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  x ) )
134 ordelss 4894 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  ( om  ^o  x )  /\  ( A  .o  z )  e.  ( om  ^o  x
) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) )
135109, 133, 134syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) )
136135ex 434 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y )  /\  z  e.  ( om  ^o  y ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
137106, 136syl5 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
138137rexlimdva 2955 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  /\  ( (/) 
e.  y  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
139102, 138syl5 32 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( ( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
140139expdimp 437 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
141101, 140sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
142141ralrimiv 2876 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
143 iunss 4366 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ( om  ^o  x ) ( A  .o  z )  C_  ( om  ^o  x )  <->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
144142, 143sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  U_ z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
14582, 144eqsstrd 3538 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) ) 
C_  ( om  ^o  x ) )
146 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
147 omword2 7223 . . . . . . . . . . . . 13  |-  ( ( ( ( om  ^o  x )  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( om  ^o  x )  C_  ( A  .o  ( om  ^o  x ) ) )
14872, 63, 146, 147syl21anc 1227 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  C_  ( A  .o  ( om  ^o  x
) ) )
149145, 148eqssd 3521 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )
150149ex 434 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x ) ) )
151150anassrs 648 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) )
152151a1dd 46 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) ) )
153152expcom 435 . . . . . . 7  |-  ( Lim  x  ->  ( (
( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) ) ) ) )
1545, 10, 15, 20, 23, 62, 153tfinds3 6683 . . . . . 6  |-  ( B  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B
) ) ) )
155154com12 31 . . . . 5  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
156155adantrr 716 . . . 4  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  B  e.  On )
)  ->  ( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
157156imp32 433 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  B  e.  On ) )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
158157an32s 802 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  ( om  e.  On  /\  B  e.  On ) )  -> 
( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) )
159 nnm0 7254 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
160159ad3antrrr 729 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  (/) )  =  (/) )
161 fnoe 7160 . . . . . . 7  |-  ^o  Fn  ( On  X.  On )
162 fndm 5680 . . . . . . 7  |-  (  ^o  Fn  ( On  X.  On )  ->  dom  ^o  =  ( On  X.  On ) )
163161, 162ax-mp 5 . . . . . 6  |-  dom  ^o  =  ( On  X.  On )
164163ndmov 6443 . . . . 5  |-  ( -.  ( om  e.  On  /\  B  e.  On )  ->  ( om  ^o  B )  =  (/) )
165164adantl 466 . . . 4  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( om  ^o  B )  =  (/) )
166165oveq2d 6300 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( A  .o  (/) ) )
167160, 166, 1653eqtr4d 2518 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) )
168158, 167pm2.61dan 789 1  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    C_ wss 3476   (/)c0 3785   U_ciun 4325   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880    X. cxp 4997   dom cdm 4999    Fn wfn 5583  (class class class)co 6284   omcom 6684   1oc1o 7123   2oc2o 7124    .o comu 7128    ^o coe 7129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-oexp 7136
This theorem is referenced by:  cnfcom3  8148  cnfcom3OLD  8156
  Copyright terms: Public domain W3C validator