MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Unicode version

Theorem omabs 7288
Description: Ordinal multiplication is also absorbed by powers of  om. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )

Proof of Theorem omabs
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2527 . . . . . . . 8  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
2 oveq2 6278 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( om 
^o  x )  =  ( om  ^o  (/) ) )
32oveq2d 6286 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  (/) ) ) )
43, 2eqeq12d 2476 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
51, 4imbi12d 318 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
(/)  e.  x  ->  ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) ) )
6 eleq2 2527 . . . . . . . 8  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
7 oveq2 6278 . . . . . . . . . 10  |-  ( x  =  y  ->  ( om  ^o  x )  =  ( om  ^o  y
) )
87oveq2d 6286 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  y ) ) )
98, 7eqeq12d 2476 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  y
) )  =  ( om  ^o  y ) ) )
106, 9imbi12d 318 . . . . . . 7  |-  ( x  =  y  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) ) ) )
11 eleq2 2527 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
12 oveq2 6278 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( om  ^o  x
)  =  ( om 
^o  suc  y )
)
1312oveq2d 6286 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  suc  y
) ) )
1413, 12eqeq12d 2476 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x )  <->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
1511, 14imbi12d 318 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y
) )  =  ( om  ^o  suc  y
) ) ) )
16 eleq2 2527 . . . . . . . 8  |-  ( x  =  B  ->  ( (/) 
e.  x  <->  (/)  e.  B
) )
17 oveq2 6278 . . . . . . . . . 10  |-  ( x  =  B  ->  ( om  ^o  x )  =  ( om  ^o  B
) )
1817oveq2d 6286 . . . . . . . . 9  |-  ( x  =  B  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  B ) ) )
1918, 17eqeq12d 2476 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) ) )
2016, 19imbi12d 318 . . . . . . 7  |-  ( x  =  B  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
21 noel 3787 . . . . . . . . 9  |-  -.  (/)  e.  (/)
2221pm2.21i 131 . . . . . . . 8  |-  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) )
2322a1i 11 . . . . . . 7  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
24 simprl 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  om  e.  On )
25 simpll 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  om )
26 simplr 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  (/)  e.  A
)
27 omabslem 7287 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  A  e.  om  /\  (/)  e.  A
)  ->  ( A  .o  om )  =  om )
2824, 25, 26, 27syl3anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  om )  =  om )
2928adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  om )  =  om )
30 suceq 4932 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
31 df-1o 7122 . . . . . . . . . . . . . . . . . 18  |-  1o  =  suc  (/)
3230, 31syl6eqr 2513 . . . . . . . . . . . . . . . . 17  |-  ( y  =  (/)  ->  suc  y  =  1o )
3332oveq2d 6286 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  ( om 
^o  suc  y )  =  ( om  ^o  1o ) )
34 oe1 7185 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  On  ->  ( om  ^o  1o )  =  om )
3534ad2antrl 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  1o )  =  om )
3633, 35sylan9eqr 2517 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( om  ^o  suc  y )  =  om )
3736oveq2d 6286 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  om ) )
3829, 37, 363eqtr4d 2505 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
)
3938ex 432 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
4039a1dd 46 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
41 oveq1 6277 . . . . . . . . . . . . . 14  |-  ( ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( ( om  ^o  y )  .o  om ) )
42 oesuc 7169 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  suc  y )  =  ( ( om  ^o  y
)  .o  om )
)
4342adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o 
suc  y )  =  ( ( om  ^o  y )  .o  om ) )
4443oveq2d 6286 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
45 nnon 6679 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  om  ->  A  e.  On )
4645ad2antrr 723 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  On )
47 oecl 7179 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  y
)  e.  On )
4847adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  y )  e.  On )
49 omass 7221 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  ( om  ^o  y )  e.  On  /\  om  e.  On )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
5046, 48, 24, 49syl3anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( A  .o  ( ( om  ^o  y )  .o  om ) ) )
5144, 50eqtr4d 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( ( A  .o  ( om  ^o  y ) )  .o  om )
)
5251, 43eqeq12d 2476 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y )  <->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( ( om  ^o  y
)  .o  om )
) )
5341, 52syl5ibr 221 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
5453imim2d 52 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
5554com23 78 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( (/)  e.  y  ->  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
56 simprr 755 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  y  e.  On )
57 on0eqel 4984 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
y  =  (/)  \/  (/)  e.  y ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  \/  (/)  e.  y ) )
5940, 55, 58mpjaod 379 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
6059a1dd 46 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  suc  y  ->  ( A  .o  ( om 
^o  suc  y )
)  =  ( om 
^o  suc  y )
) ) )
6160anassrs 646 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  y  e.  On )  ->  (
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) )
6261expcom 433 . . . . . . 7  |-  ( y  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) ) )
6345ad3antrrr 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A  e.  On )
64 simprl 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  On )
65 simprr 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  Lim  x )
66 vex 3109 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
6765, 66jctil 535 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
68 limelon 4930 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
6967, 68syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  x  e.  On )
70 oecl 7179 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  x  e.  On )  ->  ( om  ^o  x
)  e.  On )
7164, 69, 70syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( om  ^o  x
)  e.  On )
7271adantr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
73 1onn 7280 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  om
7473a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  1o  e.  om )
75 ondif2 7144 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  ( On  \  2o )  <->  ( om  e.  On  /\  1o  e.  om ) )
7664, 74, 75sylanbrc 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  ( On  \  2o ) )
7776adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
7867adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
79 oelimcl 7241 . . . . . . . . . . . . . . 15  |-  ( ( om  e.  ( On 
\  2o )  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  ( om  ^o  x ) )
8077, 78, 79syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  Lim  ( om  ^o  x
) )
81 omlim 7175 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( ( om  ^o  x )  e.  On  /\ 
Lim  ( om  ^o  x ) ) )  ->  ( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
8263, 72, 80, 81syl12anc 1224 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
83 simplrl 759 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  On )
84 oelim2 7236 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( om  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( om  ^o  x )  =  U_ y  e.  ( x  \  1o ) ( om 
^o  y ) )
8583, 78, 84syl2anc 659 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  =  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) )
8685eleq2d 2524 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <-> 
z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) ) )
87 eliun 4320 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) )
8886, 87syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  (
x  \  1o )
z  e.  ( om 
^o  y ) ) )
8969adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  x  e.  On )
90 anass 647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  <->  ( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y
) ) ) )
91 onelon 4892 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
92 on0eln0 4922 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  ( (/) 
e.  y  <->  y  =/=  (/) ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( (/)  e.  y  <->  y  =/=  (/) ) )
9493pm5.32da 639 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
( y  e.  x  /\  y  =/=  (/) ) ) )
95 dif1o 7142 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( x  \  1o )  <->  ( y  e.  x  /\  y  =/=  (/) ) )
9694, 95syl6bbr 263 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
y  e.  ( x 
\  1o ) ) )
9796anbi1d 702 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (
( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y
) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9890, 97syl5bbr 259 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  (
( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9998rexbidv2 2961 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  ( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) ) )
10089, 99syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om 
^o  y ) ) )
10188, 100bitr4d 256 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
102 r19.29 2989 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. y  e.  x  ( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  E. y  e.  x  (
(/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
103 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) ) )
104103imp 427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  (/) 
e.  y )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
105104anim1i 566 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
106105anasss 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
10771ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
108 eloni 4877 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( om  ^o  x )  e.  On  ->  Ord  ( om  ^o  x ) )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  Ord  ( om  ^o  x
) )
110 simprr 755 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  ( om 
^o  y ) )
11164ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  On )
11269ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  x  e.  On )
113 simplr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  x )
114112, 113, 91syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  On )
115111, 114, 47syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  On )
116 onelon 4892 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( om  ^o  y
)  e.  On  /\  z  e.  ( om  ^o  y ) )  -> 
z  e.  On )
117115, 110, 116syl2anc 659 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  On )
11845ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  A  e.  On )
119118ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  A  e.  On )
120 simplr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  (/) 
e.  A )
121120ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
122 omord2 7208 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( z  e.  On  /\  ( om  ^o  y
)  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  e.  ( om  ^o  y
)  <->  ( A  .o  z )  e.  ( A  .o  ( om 
^o  y ) ) ) )
123117, 115, 119, 121, 122syl31anc 1229 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  y )  <-> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) ) )
124110, 123mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) )
125 simprl 754 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
126124, 125eleqtrd 2544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  y ) )
12776ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
128 oeord 7229 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  On  /\  x  e.  On  /\  om  e.  ( On  \  2o ) )  ->  (
y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
129114, 112, 127, 128syl3anc 1226 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
130113, 129mpbid 210 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  ( om 
^o  x ) )
131 ontr1 4913 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( om  ^o  x )  e.  On  ->  (
( ( A  .o  z )  e.  ( om  ^o  y )  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
132107, 131syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( ( ( A  .o  z )  e.  ( om  ^o  y
)  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
133126, 130, 132mp2and 677 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  x ) )
134 ordelss 4883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  ( om  ^o  x )  /\  ( A  .o  z )  e.  ( om  ^o  x
) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) )
135109, 133, 134syl2anc 659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) )
136135ex 432 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y )  /\  z  e.  ( om  ^o  y ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
137106, 136syl5 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
138137rexlimdva 2946 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  /\  ( (/) 
e.  y  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
139102, 138syl5 32 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( ( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
140139expdimp 435 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
141101, 140sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
142141ralrimiv 2866 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
143 iunss 4356 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ( om  ^o  x ) ( A  .o  z )  C_  ( om  ^o  x )  <->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
144142, 143sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  U_ z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
14582, 144eqsstrd 3523 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) ) 
C_  ( om  ^o  x ) )
146 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
147 omword2 7215 . . . . . . . . . . . . 13  |-  ( ( ( ( om  ^o  x )  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( om  ^o  x )  C_  ( A  .o  ( om  ^o  x ) ) )
14872, 63, 146, 147syl21anc 1225 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  C_  ( A  .o  ( om  ^o  x
) ) )
149145, 148eqssd 3506 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )
150149ex 432 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x ) ) )
151150anassrs 646 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) )
152151a1dd 46 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) ) )
153152expcom 433 . . . . . . 7  |-  ( Lim  x  ->  ( (
( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) ) ) ) )
1545, 10, 15, 20, 23, 62, 153tfinds3 6672 . . . . . 6  |-  ( B  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B
) ) ) )
155154com12 31 . . . . 5  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
156155adantrr 714 . . . 4  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  B  e.  On )
)  ->  ( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
157156imp32 431 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  B  e.  On ) )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
158157an32s 802 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  ( om  e.  On  /\  B  e.  On ) )  -> 
( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) )
159 nnm0 7246 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
160159ad3antrrr 727 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  (/) )  =  (/) )
161 fnoe 7152 . . . . . . 7  |-  ^o  Fn  ( On  X.  On )
162 fndm 5662 . . . . . . 7  |-  (  ^o  Fn  ( On  X.  On )  ->  dom  ^o  =  ( On  X.  On ) )
163161, 162ax-mp 5 . . . . . 6  |-  dom  ^o  =  ( On  X.  On )
164163ndmov 6432 . . . . 5  |-  ( -.  ( om  e.  On  /\  B  e.  On )  ->  ( om  ^o  B )  =  (/) )
165164adantl 464 . . . 4  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( om  ^o  B )  =  (/) )
166165oveq2d 6286 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( A  .o  (/) ) )
167160, 166, 1653eqtr4d 2505 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) )
168158, 167pm2.61dan 789 1  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   A.wral 2804   E.wrex 2805   _Vcvv 3106    \ cdif 3458    C_ wss 3461   (/)c0 3783   U_ciun 4315   Ord word 4866   Oncon0 4867   Lim wlim 4868   suc csuc 4869    X. cxp 4986   dom cdm 4988    Fn wfn 5565  (class class class)co 6270   omcom 6673   1oc1o 7115   2oc2o 7116    .o comu 7120    ^o coe 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-oexp 7128
This theorem is referenced by:  cnfcom3  8139  cnfcom3OLD  8147
  Copyright terms: Public domain W3C validator