MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omabs Structured version   Unicode version

Theorem omabs 7085
Description: Ordinal multiplication is also absorbed by powers of  om. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
omabs  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )

Proof of Theorem omabs
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2503 . . . . . . . 8  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
2 oveq2 6098 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( om 
^o  x )  =  ( om  ^o  (/) ) )
32oveq2d 6106 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  (/) ) ) )
43, 2eqeq12d 2456 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
51, 4imbi12d 320 . . . . . . 7  |-  ( x  =  (/)  ->  ( (
(/)  e.  x  ->  ( A  .o  ( om 
^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) ) )
6 eleq2 2503 . . . . . . . 8  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
7 oveq2 6098 . . . . . . . . . 10  |-  ( x  =  y  ->  ( om  ^o  x )  =  ( om  ^o  y
) )
87oveq2d 6106 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  y ) ) )
98, 7eqeq12d 2456 . . . . . . . 8  |-  ( x  =  y  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  y
) )  =  ( om  ^o  y ) ) )
106, 9imbi12d 320 . . . . . . 7  |-  ( x  =  y  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) ) ) )
11 eleq2 2503 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
12 oveq2 6098 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( om  ^o  x
)  =  ( om 
^o  suc  y )
)
1312oveq2d 6106 . . . . . . . . 9  |-  ( x  =  suc  y  -> 
( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  suc  y
) ) )
1413, 12eqeq12d 2456 . . . . . . . 8  |-  ( x  =  suc  y  -> 
( ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x )  <->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
1511, 14imbi12d 320 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y
) )  =  ( om  ^o  suc  y
) ) ) )
16 eleq2 2503 . . . . . . . 8  |-  ( x  =  B  ->  ( (/) 
e.  x  <->  (/)  e.  B
) )
17 oveq2 6098 . . . . . . . . . 10  |-  ( x  =  B  ->  ( om  ^o  x )  =  ( om  ^o  B
) )
1817oveq2d 6106 . . . . . . . . 9  |-  ( x  =  B  ->  ( A  .o  ( om  ^o  x ) )  =  ( A  .o  ( om  ^o  B ) ) )
1918, 17eqeq12d 2456 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x )  <->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) ) )
2016, 19imbi12d 320 . . . . . . 7  |-  ( x  =  B  ->  (
( (/)  e.  x  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )  <->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
21 noel 3640 . . . . . . . . 9  |-  -.  (/)  e.  (/)
2221pm2.21i 131 . . . . . . . 8  |-  ( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) )
2322a1i 11 . . . . . . 7  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( (/)  e.  (/)  ->  ( A  .o  ( om  ^o  (/) ) )  =  ( om  ^o  (/) ) ) )
24 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  om  e.  On )
25 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  om )
26 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  (/)  e.  A
)
27 omabslem 7084 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  A  e.  om  /\  (/)  e.  A
)  ->  ( A  .o  om )  =  om )
2824, 25, 26, 27syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  om )  =  om )
2928adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  om )  =  om )
30 suceq 4783 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
31 df-1o 6919 . . . . . . . . . . . . . . . . . 18  |-  1o  =  suc  (/)
3230, 31syl6eqr 2492 . . . . . . . . . . . . . . . . 17  |-  ( y  =  (/)  ->  suc  y  =  1o )
3332oveq2d 6106 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  ( om 
^o  suc  y )  =  ( om  ^o  1o ) )
34 oe1 6982 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  On  ->  ( om  ^o  1o )  =  om )
3534ad2antrl 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  1o )  =  om )
3633, 35sylan9eqr 2496 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( om  ^o  suc  y )  =  om )
3736oveq2d 6106 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  om ) )
3829, 37, 363eqtr4d 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  y  e.  On ) )  /\  y  =  (/) )  -> 
( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
)
3938ex 434 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
4039a1dd 46 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
41 oveq1 6097 . . . . . . . . . . . . . 14  |-  ( ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( ( om  ^o  y )  .o  om ) )
42 oesuc 6966 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  suc  y )  =  ( ( om  ^o  y
)  .o  om )
)
4342adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o 
suc  y )  =  ( ( om  ^o  y )  .o  om ) )
4443oveq2d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
45 nnon 6481 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  om  ->  A  e.  On )
4645ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  A  e.  On )
47 oecl 6976 . . . . . . . . . . . . . . . . . 18  |-  ( ( om  e.  On  /\  y  e.  On )  ->  ( om  ^o  y
)  e.  On )
4847adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( om  ^o  y )  e.  On )
49 omass 7018 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  On  /\  ( om  ^o  y )  e.  On  /\  om  e.  On )  ->  (
( A  .o  ( om  ^o  y ) )  .o  om )  =  ( A  .o  (
( om  ^o  y
)  .o  om )
) )
5046, 48, 24, 49syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( A  .o  ( ( om  ^o  y )  .o  om ) ) )
5144, 50eqtr4d 2477 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( ( A  .o  ( om  ^o  y ) )  .o  om )
)
5251, 43eqeq12d 2456 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y )  <->  ( ( A  .o  ( om  ^o  y ) )  .o 
om )  =  ( ( om  ^o  y
)  .o  om )
) )
5341, 52syl5ibr 221 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
5453imim2d 52 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
5554com23 78 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( (/)  e.  y  ->  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) ) )
56 simprr 756 . . . . . . . . . . . 12  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  y  e.  On )
57 on0eqel 4835 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
y  =  (/)  \/  (/)  e.  y ) )
5856, 57syl 16 . . . . . . . . . . 11  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( y  =  (/)  \/  (/)  e.  y ) )
5940, 55, 58mpjaod 381 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om  ^o  suc  y ) ) )
6059a1dd 46 . . . . . . . . 9  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  y  e.  On )
)  ->  ( ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  suc  y  ->  ( A  .o  ( om 
^o  suc  y )
)  =  ( om 
^o  suc  y )
) ) )
6160anassrs 648 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  y  e.  On )  ->  (
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) )
6261expcom 435 . . . . . . 7  |-  ( y  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  suc  y  ->  ( A  .o  ( om  ^o  suc  y ) )  =  ( om 
^o  suc  y )
) ) ) )
6345ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A  e.  On )
64 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  On )
65 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  Lim  x )
66 vex 2974 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
6765, 66jctil 537 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
68 limelon 4781 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  _V  /\  Lim  x )  ->  x  e.  On )
6967, 68syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  x  e.  On )
70 oecl 6976 . . . . . . . . . . . . . . . 16  |-  ( ( om  e.  On  /\  x  e.  On )  ->  ( om  ^o  x
)  e.  On )
7164, 69, 70syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( om  ^o  x
)  e.  On )
7271adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
73 1onn 7077 . . . . . . . . . . . . . . . . . 18  |-  1o  e.  om
7473a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  1o  e.  om )
75 ondif2 6941 . . . . . . . . . . . . . . . . 17  |-  ( om  e.  ( On  \  2o )  <->  ( om  e.  On  /\  1o  e.  om ) )
7664, 74, 75sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  om  e.  ( On  \  2o ) )
7776adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
7867adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( x  e.  _V  /\ 
Lim  x ) )
79 oelimcl 7038 . . . . . . . . . . . . . . 15  |-  ( ( om  e.  ( On 
\  2o )  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  Lim  ( om  ^o  x ) )
8077, 78, 79syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  Lim  ( om  ^o  x
) )
81 omlim 6972 . . . . . . . . . . . . . 14  |-  ( ( A  e.  On  /\  ( ( om  ^o  x )  e.  On  /\ 
Lim  ( om  ^o  x ) ) )  ->  ( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
8263, 72, 80, 81syl12anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  U_ z  e.  ( om  ^o  x
) ( A  .o  z ) )
83 simplrl 759 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  om  e.  On )
84 oelim2 7033 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( om  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( om  ^o  x )  =  U_ y  e.  ( x  \  1o ) ( om 
^o  y ) )
8583, 78, 84syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  =  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) )
8685eleq2d 2509 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <-> 
z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y ) ) )
87 eliun 4174 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  U_ y  e.  ( x  \  1o ) ( om  ^o  y )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) )
8886, 87syl6bb 261 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  (
x  \  1o )
z  e.  ( om 
^o  y ) ) )
8969adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  x  e.  On )
90 anass 649 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  <->  ( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y
) ) ) )
91 onelon 4743 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
92 on0eln0 4773 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  On  ->  ( (/) 
e.  y  <->  y  =/=  (/) ) )
9391, 92syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( (/)  e.  y  <->  y  =/=  (/) ) )
9493pm5.32da 641 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
( y  e.  x  /\  y  =/=  (/) ) ) )
95 dif1o 6939 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( x  \  1o )  <->  ( y  e.  x  /\  y  =/=  (/) ) )
9694, 95syl6bbr 263 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  On  ->  (
( y  e.  x  /\  (/)  e.  y )  <-> 
y  e.  ( x 
\  1o ) ) )
9796anbi1d 704 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  (
( ( y  e.  x  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y
) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9890, 97syl5bbr 259 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  (
( y  e.  x  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  <->  ( y  e.  ( x  \  1o )  /\  z  e.  ( om  ^o  y ) ) ) )
9998rexbidv2 2737 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  On  ->  ( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om  ^o  y ) ) )
10089, 99syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  <->  E. y  e.  ( x  \  1o ) z  e.  ( om 
^o  y ) ) )
10188, 100bitr4d 256 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  <->  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
102 r19.29 2856 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. y  e.  x  ( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  E. y  e.  x  (
(/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) ) )
103 id 22 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
(/)  e.  y  ->  ( A  .o  ( om 
^o  y ) )  =  ( om  ^o  y ) )  -> 
( (/)  e.  y  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) ) )
104103imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  (/) 
e.  y )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
105104anim1i 568 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  (/)  e.  y )  /\  z  e.  ( om  ^o  y ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
106105anasss 647 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
)  /\  z  e.  ( om  ^o  y ) ) )
10771ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  e.  On )
108 eloni 4728 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( om  ^o  x )  e.  On  ->  Ord  ( om  ^o  x ) )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  Ord  ( om  ^o  x
) )
110 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  ( om 
^o  y ) )
11164ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  On )
11269ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  x  e.  On )
113 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  x )
114112, 113, 91syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
y  e.  On )
115111, 114, 47syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  On )
116 onelon 4743 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( om  ^o  y
)  e.  On  /\  z  e.  ( om  ^o  y ) )  -> 
z  e.  On )
117115, 110, 116syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
z  e.  On )
11845ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  A  e.  On )
119118ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  A  e.  On )
120 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  ->  (/) 
e.  A )
121120ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
122 omord2 7005 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( z  e.  On  /\  ( om  ^o  y
)  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( z  e.  ( om  ^o  y
)  <->  ( A  .o  z )  e.  ( A  .o  ( om 
^o  y ) ) ) )
123117, 115, 119, 121, 122syl31anc 1221 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  y )  <-> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) ) )
124110, 123mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( A  .o  ( om  ^o  y ) ) )
125 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y ) )
126124, 125eleqtrd 2518 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  y ) )
12776ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  ->  om  e.  ( On  \  2o ) )
128 oeord 7026 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  e.  On  /\  x  e.  On  /\  om  e.  ( On  \  2o ) )  ->  (
y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
129114, 112, 127, 128syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( y  e.  x  <->  ( om  ^o  y )  e.  ( om  ^o  x ) ) )
130113, 129mpbid 210 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( om  ^o  y
)  e.  ( om 
^o  x ) )
131 ontr1 4764 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( om  ^o  x )  e.  On  ->  (
( ( A  .o  z )  e.  ( om  ^o  y )  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
132107, 131syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( ( ( A  .o  z )  e.  ( om  ^o  y
)  /\  ( om  ^o  y )  e.  ( om  ^o  x ) )  ->  ( A  .o  z )  e.  ( om  ^o  x ) ) )
133126, 130, 132mp2and 679 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  e.  ( om 
^o  x ) )
134 ordelss 4734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  ( om  ^o  x )  /\  ( A  .o  z )  e.  ( om  ^o  x
) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) )
135109, 133, 134syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( A  e.  om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  /\  (
( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y )  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) )
136135ex 434 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y )  /\  z  e.  ( om  ^o  y ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
137106, 136syl5 32 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  y  e.  x )  ->  (
( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
138137rexlimdva 2840 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( E. y  e.  x  ( ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  /\  ( (/) 
e.  y  /\  z  e.  ( om  ^o  y
) ) )  -> 
( A  .o  z
)  C_  ( om  ^o  x ) ) )
139102, 138syl5 32 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( ( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  /\  E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
140139expdimp 437 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( E. y  e.  x  ( (/)  e.  y  /\  z  e.  ( om  ^o  y ) )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
141101, 140sylbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( z  e.  ( om  ^o  x )  ->  ( A  .o  z )  C_  ( om  ^o  x ) ) )
142141ralrimiv 2797 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
143 iunss 4210 . . . . . . . . . . . . . 14  |-  ( U_ z  e.  ( om  ^o  x ) ( A  .o  z )  C_  ( om  ^o  x )  <->  A. z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
144142, 143sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  U_ z  e.  ( om  ^o  x ) ( A  .o  z ) 
C_  ( om  ^o  x ) )
14582, 144eqsstrd 3389 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) ) 
C_  ( om  ^o  x ) )
146 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  ->  (/) 
e.  A )
147 omword2 7012 . . . . . . . . . . . . 13  |-  ( ( ( ( om  ^o  x )  e.  On  /\  A  e.  On )  /\  (/)  e.  A )  ->  ( om  ^o  x )  C_  ( A  .o  ( om  ^o  x ) ) )
14872, 63, 146, 147syl21anc 1217 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( om  ^o  x
)  C_  ( A  .o  ( om  ^o  x
) ) )
149145, 148eqssd 3372 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  Lim  x
) )  /\  A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) ) )  -> 
( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) )
150149ex 434 . . . . . . . . . 10  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  Lim  x ) )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om 
^o  x ) ) )
151150anassrs 648 . . . . . . . . 9  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) )
152151a1dd 46 . . . . . . . 8  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  /\  Lim  x
)  ->  ( A. y  e.  x  ( (/) 
e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om  ^o  y
) )  ->  ( (/) 
e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x
) ) ) )
153152expcom 435 . . . . . . 7  |-  ( Lim  x  ->  ( (
( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( A. y  e.  x  ( (/)  e.  y  ->  ( A  .o  ( om  ^o  y ) )  =  ( om 
^o  y ) )  ->  ( (/)  e.  x  ->  ( A  .o  ( om  ^o  x ) )  =  ( om  ^o  x ) ) ) ) )
1545, 10, 15, 20, 23, 62, 153tfinds3 6474 . . . . . 6  |-  ( B  e.  On  ->  (
( ( A  e. 
om  /\  (/)  e.  A
)  /\  om  e.  On )  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B
) ) ) )
155154com12 31 . . . . 5  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  om  e.  On )  -> 
( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
156155adantrr 716 . . . 4  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( om  e.  On  /\  B  e.  On )
)  ->  ( B  e.  On  ->  ( (/)  e.  B  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) ) ) )
157156imp32 433 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( om  e.  On  /\  B  e.  On ) )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
158157an32s 802 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  ( om  e.  On  /\  B  e.  On ) )  -> 
( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) )
159 nnm0 7043 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
160159ad3antrrr 729 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  (/) )  =  (/) )
161 fnoe 6949 . . . . . . 7  |-  ^o  Fn  ( On  X.  On )
162 fndm 5509 . . . . . . 7  |-  (  ^o  Fn  ( On  X.  On )  ->  dom  ^o  =  ( On  X.  On ) )
163161, 162ax-mp 5 . . . . . 6  |-  dom  ^o  =  ( On  X.  On )
164163ndmov 6246 . . . . 5  |-  ( -.  ( om  e.  On  /\  B  e.  On )  ->  ( om  ^o  B )  =  (/) )
165164adantl 466 . . . 4  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( om  ^o  B )  =  (/) )
166165oveq2d 6106 . . 3  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( A  .o  (/) ) )
167160, 166, 1653eqtr4d 2484 . 2  |-  ( ( ( ( A  e. 
om  /\  (/)  e.  A
)  /\  ( B  e.  On  /\  (/)  e.  B
) )  /\  -.  ( om  e.  On  /\  B  e.  On )
)  ->  ( A  .o  ( om  ^o  B
) )  =  ( om  ^o  B ) )
168158, 167pm2.61dan 789 1  |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om 
^o  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715   _Vcvv 2971    \ cdif 3324    C_ wss 3327   (/)c0 3636   U_ciun 4170   Ord word 4717   Oncon0 4718   Lim wlim 4719   suc csuc 4720    X. cxp 4837   dom cdm 4839    Fn wfn 5412  (class class class)co 6090   omcom 6475   1oc1o 6912   2oc2o 6913    .o comu 6917    ^o coe 6918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-omul 6924  df-oexp 6925
This theorem is referenced by:  cnfcom3  7936  cnfcom3OLD  7944
  Copyright terms: Public domain W3C validator