MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzsuci Structured version   Unicode version

Theorem om2uzsuci 11790
Description: The value of  G (see om2uz0i 11789) at a successor. (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzsuci  |-  ( A  e.  om  ->  ( G `  suc  A )  =  ( ( G `
 A )  +  1 ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    G( x)

Proof of Theorem om2uzsuci
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4803 . . . 4  |-  ( z  =  A  ->  suc  z  =  suc  A )
21fveq2d 5714 . . 3  |-  ( z  =  A  ->  ( G `  suc  z )  =  ( G `  suc  A ) )
3 fveq2 5710 . . . 4  |-  ( z  =  A  ->  ( G `  z )  =  ( G `  A ) )
43oveq1d 6125 . . 3  |-  ( z  =  A  ->  (
( G `  z
)  +  1 )  =  ( ( G `
 A )  +  1 ) )
52, 4eqeq12d 2457 . 2  |-  ( z  =  A  ->  (
( G `  suc  z )  =  ( ( G `  z
)  +  1 )  <-> 
( G `  suc  A )  =  ( ( G `  A )  +  1 ) ) )
6 ovex 6135 . . 3  |-  ( ( G `  z )  +  1 )  e. 
_V
7 om2uz.2 . . . 4  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
8 oveq1 6117 . . . 4  |-  ( y  =  x  ->  (
y  +  1 )  =  ( x  + 
1 ) )
9 oveq1 6117 . . . 4  |-  ( y  =  ( G `  z )  ->  (
y  +  1 )  =  ( ( G `
 z )  +  1 ) )
107, 8, 9frsucmpt2 6914 . . 3  |-  ( ( z  e.  om  /\  ( ( G `  z )  +  1 )  e.  _V )  ->  ( G `  suc  z )  =  ( ( G `  z
)  +  1 ) )
116, 10mpan2 671 . 2  |-  ( z  e.  om  ->  ( G `  suc  z )  =  ( ( G `
 z )  +  1 ) )
125, 11vtoclga 3055 1  |-  ( A  e.  om  ->  ( G `  suc  A )  =  ( ( G `
 A )  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   _Vcvv 2991    e. cmpt 4369   suc csuc 4740    |` cres 4861   ` cfv 5437  (class class class)co 6110   omcom 6495   reccrdg 6884   1c1 9302    + caddc 9304   ZZcz 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-tp 3901  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-tr 4405  df-eprel 4651  df-id 4655  df-po 4660  df-so 4661  df-fr 4698  df-we 4700  df-ord 4741  df-on 4742  df-lim 4743  df-suc 4744  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-ov 6113  df-om 6496  df-recs 6851  df-rdg 6885
This theorem is referenced by:  om2uzuzi  11791  om2uzlti  11792  om2uzrani  11794  om2uzrdg  11798  uzrdgsuci  11802  uzrdgxfr  11808  fzennn  11809  axdc4uzlem  11823  hashgadd  12159
  Copyright terms: Public domain W3C validator