MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Visualization version   Unicode version

Theorem om2uzrdg 12208
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function  F ( x ,  y ) and initial value  A. Normally  F is a function on the partition, and  A is a member of the partition. See also comment in om2uz0i 12199. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
uzrdg.1  |-  A  e. 
_V
uzrdg.2  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
Assertion
Ref Expression
om2uzrdg  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Distinct variable groups:    y, A    x, y, C    y, G    x, F, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    G( x)

Proof of Theorem om2uzrdg
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5879 . . 3  |-  ( z  =  (/)  ->  ( R `
 z )  =  ( R `  (/) ) )
2 fveq2 5879 . . . 4  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
31fveq2d 5883 . . . 4  |-  ( z  =  (/)  ->  ( 2nd `  ( R `  z
) )  =  ( 2nd `  ( R `
 (/) ) ) )
42, 3opeq12d 4166 . . 3  |-  ( z  =  (/)  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
51, 4eqeq12d 2486 . 2  |-  ( z  =  (/)  ->  ( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `
 z ) )
>. 
<->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. ) )
6 fveq2 5879 . . 3  |-  ( z  =  v  ->  ( R `  z )  =  ( R `  v ) )
7 fveq2 5879 . . . 4  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
86fveq2d 5883 . . . 4  |-  ( z  =  v  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  v )
) )
97, 8opeq12d 4166 . . 3  |-  ( z  =  v  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. )
106, 9eqeq12d 2486 . 2  |-  ( z  =  v  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
11 fveq2 5879 . . 3  |-  ( z  =  suc  v  -> 
( R `  z
)  =  ( R `
 suc  v )
)
12 fveq2 5879 . . . 4  |-  ( z  =  suc  v  -> 
( G `  z
)  =  ( G `
 suc  v )
)
1311fveq2d 5883 . . . 4  |-  ( z  =  suc  v  -> 
( 2nd `  ( R `  z )
)  =  ( 2nd `  ( R `  suc  v ) ) )
1412, 13opeq12d 4166 . . 3  |-  ( z  =  suc  v  ->  <. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >.  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
)
1511, 14eqeq12d 2486 . 2  |-  ( z  =  suc  v  -> 
( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
16 fveq2 5879 . . 3  |-  ( z  =  B  ->  ( R `  z )  =  ( R `  B ) )
17 fveq2 5879 . . . 4  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1816fveq2d 5883 . . . 4  |-  ( z  =  B  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  B )
) )
1917, 18opeq12d 4166 . . 3  |-  ( z  =  B  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
2016, 19eqeq12d 2486 . 2  |-  ( z  =  B  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
21 uzrdg.2 . . . . 5  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
2221fveq1i 5880 . . . 4  |-  ( R `
 (/) )  =  ( ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  (/) )
23 opex 4664 . . . . 5  |-  <. C ,  A >.  e.  _V
24 fr0g 7171 . . . . 5  |-  ( <. C ,  A >.  e. 
_V  ->  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >. )
2523, 24ax-mp 5 . . . 4  |-  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >.
2622, 25eqtri 2493 . . 3  |-  ( R `
 (/) )  =  <. C ,  A >.
27 om2uz.1 . . . . 5  |-  C  e.  ZZ
28 om2uz.2 . . . . 5  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
2927, 28om2uz0i 12199 . . . 4  |-  ( G `
 (/) )  =  C
3026fveq2i 5882 . . . . 5  |-  ( 2nd `  ( R `  (/) ) )  =  ( 2nd `  <. C ,  A >. )
3127elexi 3041 . . . . . 6  |-  C  e. 
_V
32 uzrdg.1 . . . . . 6  |-  A  e. 
_V
3331, 32op2nd 6821 . . . . 5  |-  ( 2nd `  <. C ,  A >. )  =  A
3430, 33eqtri 2493 . . . 4  |-  ( 2nd `  ( R `  (/) ) )  =  A
3529, 34opeq12i 4163 . . 3  |-  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.  =  <. C ,  A >.
3626, 35eqtr4i 2496 . 2  |-  ( R `
 (/) )  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.
37 frsuc 7172 . . . . . 6  |-  ( v  e.  om  ->  (
( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  suc  v )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) ) )
3821fveq1i 5880 . . . . . 6  |-  ( R `
 suc  v )  =  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  suc  v )
3921fveq1i 5880 . . . . . . 7  |-  ( R `
 v )  =  ( ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  v )
4039fveq2i 5882 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  v ) )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) )
4137, 38, 403eqtr4g 2530 . . . . 5  |-  ( v  e.  om  ->  ( R `  suc  v )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) ) )
42 fveq2 5879 . . . . . 6  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. ) )
43 df-ov 6311 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )
44 fvex 5889 . . . . . . . 8  |-  ( G `
 v )  e. 
_V
45 fvex 5889 . . . . . . . 8  |-  ( 2nd `  ( R `  v
) )  e.  _V
46 oveq1 6315 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w  +  1 )  =  ( ( G `
 v )  +  1 ) )
47 oveq1 6315 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w F z )  =  ( ( G `
 v ) F z ) )
4846, 47opeq12d 4166 . . . . . . . . 9  |-  ( w  =  ( G `  v )  ->  <. (
w  +  1 ) ,  ( w F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F z ) >. )
49 oveq2 6316 . . . . . . . . . 10  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  ( ( G `  v ) F z )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
5049opeq2d 4165 . . . . . . . . 9  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
51 oveq1 6315 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  +  1 )  =  ( w  + 
1 ) )
52 oveq1 6315 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x F y )  =  ( w F y ) )
5351, 52opeq12d 4166 . . . . . . . . . 10  |-  ( x  =  w  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( w  +  1 ) ,  ( w F y ) >. )
54 oveq2 6316 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w F y )  =  ( w F z ) )
5554opeq2d 4165 . . . . . . . . . 10  |-  ( y  =  z  ->  <. (
w  +  1 ) ,  ( w F y ) >.  =  <. ( w  +  1 ) ,  ( w F z ) >. )
5653, 55cbvmpt2v 6390 . . . . . . . . 9  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  =  ( w  e. 
_V ,  z  e. 
_V  |->  <. ( w  + 
1 ) ,  ( w F z )
>. )
57 opex 4664 . . . . . . . . 9  |-  <. (
( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.  e.  _V
5848, 50, 56, 57ovmpt2 6451 . . . . . . . 8  |-  ( ( ( G `  v
)  e.  _V  /\  ( 2nd `  ( R `
 v ) )  e.  _V )  -> 
( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
5944, 45, 58mp2an 686 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6043, 59eqtr3i 2495 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6142, 60syl6eq 2521 . . . . 5  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
6241, 61sylan9eq 2525 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)
6327, 28om2uzsuci 12200 . . . . . 6  |-  ( v  e.  om  ->  ( G `  suc  v )  =  ( ( G `
 v )  +  1 ) )
6463adantr 472 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( G `
 suc  v )  =  ( ( G `
 v )  +  1 ) )
6562fveq2d 5883 . . . . . 6  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
)
66 ovex 6336 . . . . . . 7  |-  ( ( G `  v )  +  1 )  e. 
_V
67 ovex 6336 . . . . . . 7  |-  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  _V
6866, 67op2nd 6821 . . . . . 6  |-  ( 2nd `  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)  =  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )
6965, 68syl6eq 2521 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
7064, 69opeq12d 4166 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  <. ( G `  suc  v ) ,  ( 2nd `  ( R `  suc  v ) ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
7162, 70eqtr4d 2508 . . 3  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. )
7271ex 441 . 2  |-  ( v  e.  om  ->  (
( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >.  ->  ( R `  suc  v )  = 
<. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. ) )
735, 10, 15, 20, 36, 72finds 6738 1  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031   (/)c0 3722   <.cop 3965    |-> cmpt 4454    |` cres 4841   suc csuc 5432   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   omcom 6711   2ndc2nd 6811   reccrdg 7145   1c1 9558    + caddc 9560   ZZcz 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146
This theorem is referenced by:  uzrdglem  12209  uzrdgfni  12210  uzrdgsuci  12212
  Copyright terms: Public domain W3C validator