MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzrdg Structured version   Unicode version

Theorem om2uzrdg 12035
Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either  NN or  NN0) with characteristic function  F ( x ,  y ) and initial value  A. Normally  F is a function on the partition, and  A is a member of the partition. See also comment in om2uz0i 12026. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
uzrdg.1  |-  A  e. 
_V
uzrdg.2  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
Assertion
Ref Expression
om2uzrdg  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Distinct variable groups:    y, A    x, y, C    y, G    x, F, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    G( x)

Proof of Theorem om2uzrdg
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5866 . . 3  |-  ( z  =  (/)  ->  ( R `
 z )  =  ( R `  (/) ) )
2 fveq2 5866 . . . 4  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
31fveq2d 5870 . . . 4  |-  ( z  =  (/)  ->  ( 2nd `  ( R `  z
) )  =  ( 2nd `  ( R `
 (/) ) ) )
42, 3opeq12d 4221 . . 3  |-  ( z  =  (/)  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. )
51, 4eqeq12d 2489 . 2  |-  ( z  =  (/)  ->  ( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `
 z ) )
>. 
<->  ( R `  (/) )  = 
<. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>. ) )
6 fveq2 5866 . . 3  |-  ( z  =  v  ->  ( R `  z )  =  ( R `  v ) )
7 fveq2 5866 . . . 4  |-  ( z  =  v  ->  ( G `  z )  =  ( G `  v ) )
86fveq2d 5870 . . . 4  |-  ( z  =  v  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  v )
) )
97, 8opeq12d 4221 . . 3  |-  ( z  =  v  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. )
106, 9eqeq12d 2489 . 2  |-  ( z  =  v  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >. ) )
11 fveq2 5866 . . 3  |-  ( z  =  suc  v  -> 
( R `  z
)  =  ( R `
 suc  v )
)
12 fveq2 5866 . . . 4  |-  ( z  =  suc  v  -> 
( G `  z
)  =  ( G `
 suc  v )
)
1311fveq2d 5870 . . . 4  |-  ( z  =  suc  v  -> 
( 2nd `  ( R `  z )
)  =  ( 2nd `  ( R `  suc  v ) ) )
1412, 13opeq12d 4221 . . 3  |-  ( z  =  suc  v  ->  <. ( G `  z
) ,  ( 2nd `  ( R `  z
) ) >.  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
)
1511, 14eqeq12d 2489 . 2  |-  ( z  =  suc  v  -> 
( ( R `  z )  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  suc  v )  =  <. ( G `  suc  v
) ,  ( 2nd `  ( R `  suc  v ) ) >.
) )
16 fveq2 5866 . . 3  |-  ( z  =  B  ->  ( R `  z )  =  ( R `  B ) )
17 fveq2 5866 . . . 4  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1816fveq2d 5870 . . . 4  |-  ( z  =  B  ->  ( 2nd `  ( R `  z ) )  =  ( 2nd `  ( R `  B )
) )
1917, 18opeq12d 4221 . . 3  |-  ( z  =  B  ->  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >.  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. )
2016, 19eqeq12d 2489 . 2  |-  ( z  =  B  ->  (
( R `  z
)  =  <. ( G `  z ) ,  ( 2nd `  ( R `  z )
) >. 
<->  ( R `  B
)  =  <. ( G `  B ) ,  ( 2nd `  ( R `  B )
) >. ) )
21 uzrdg.2 . . . . 5  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
2221fveq1i 5867 . . . 4  |-  ( R `
 (/) )  =  ( ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  (/) )
23 opex 4711 . . . . 5  |-  <. C ,  A >.  e.  _V
24 fr0g 7101 . . . . 5  |-  ( <. C ,  A >.  e. 
_V  ->  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >. )
2523, 24ax-mp 5 . . . 4  |-  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  (/) )  =  <. C ,  A >.
2622, 25eqtri 2496 . . 3  |-  ( R `
 (/) )  =  <. C ,  A >.
27 om2uz.1 . . . . 5  |-  C  e.  ZZ
28 om2uz.2 . . . . 5  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
2927, 28om2uz0i 12026 . . . 4  |-  ( G `
 (/) )  =  C
3026fveq2i 5869 . . . . 5  |-  ( 2nd `  ( R `  (/) ) )  =  ( 2nd `  <. C ,  A >. )
3127elexi 3123 . . . . . 6  |-  C  e. 
_V
32 uzrdg.1 . . . . . 6  |-  A  e. 
_V
3331, 32op2nd 6793 . . . . 5  |-  ( 2nd `  <. C ,  A >. )  =  A
3430, 33eqtri 2496 . . . 4  |-  ( 2nd `  ( R `  (/) ) )  =  A
3529, 34opeq12i 4218 . . 3  |-  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.  =  <. C ,  A >.
3626, 35eqtr4i 2499 . 2  |-  ( R `
 (/) )  =  <. ( G `  (/) ) ,  ( 2nd `  ( R `  (/) ) )
>.
37 frsuc 7102 . . . . . 6  |-  ( v  e.  om  ->  (
( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  suc  v )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) ) )
3821fveq1i 5867 . . . . . 6  |-  ( R `
 suc  v )  =  ( ( rec ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. )  |`  om ) `  suc  v )
3921fveq1i 5867 . . . . . . 7  |-  ( R `
 v )  =  ( ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  v )
4039fveq2i 5869 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  v ) )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  v ) )
4137, 38, 403eqtr4g 2533 . . . . 5  |-  ( v  e.  om  ->  ( R `  suc  v )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) ) )
42 fveq2 5866 . . . . . 6  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. ) )
43 df-ov 6287 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )
44 fvex 5876 . . . . . . . 8  |-  ( G `
 v )  e. 
_V
45 fvex 5876 . . . . . . . 8  |-  ( 2nd `  ( R `  v
) )  e.  _V
46 oveq1 6291 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w  +  1 )  =  ( ( G `
 v )  +  1 ) )
47 oveq1 6291 . . . . . . . . . 10  |-  ( w  =  ( G `  v )  ->  (
w F z )  =  ( ( G `
 v ) F z ) )
4846, 47opeq12d 4221 . . . . . . . . 9  |-  ( w  =  ( G `  v )  ->  <. (
w  +  1 ) ,  ( w F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F z ) >. )
49 oveq2 6292 . . . . . . . . . 10  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  ( ( G `  v ) F z )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
5049opeq2d 4220 . . . . . . . . 9  |-  ( z  =  ( 2nd `  ( R `  v )
)  ->  <. ( ( G `  v )  +  1 ) ,  ( ( G `  v ) F z ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
51 oveq1 6291 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  +  1 )  =  ( w  + 
1 ) )
52 oveq1 6291 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x F y )  =  ( w F y ) )
5351, 52opeq12d 4221 . . . . . . . . . 10  |-  ( x  =  w  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( w  +  1 ) ,  ( w F y ) >. )
54 oveq2 6292 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
w F y )  =  ( w F z ) )
5554opeq2d 4220 . . . . . . . . . 10  |-  ( y  =  z  ->  <. (
w  +  1 ) ,  ( w F y ) >.  =  <. ( w  +  1 ) ,  ( w F z ) >. )
5653, 55cbvmpt2v 6361 . . . . . . . . 9  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  =  ( w  e. 
_V ,  z  e. 
_V  |->  <. ( w  + 
1 ) ,  ( w F z )
>. )
57 opex 4711 . . . . . . . . 9  |-  <. (
( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.  e.  _V
5848, 50, 56, 57ovmpt2 6422 . . . . . . . 8  |-  ( ( ( G `  v
)  e.  _V  /\  ( 2nd `  ( R `
 v ) )  e.  _V )  -> 
( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
5944, 45, 58mp2an 672 . . . . . . 7  |-  ( ( G `  v ) ( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  v )
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6043, 59eqtr3i 2498 . . . . . 6  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( G `
 v ) ,  ( 2nd `  ( R `  v )
) >. )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >.
6142, 60syl6eq 2524 . . . . 5  |-  ( ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>.  ->  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( R `  v
) )  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
6241, 61sylan9eq 2528 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)
6327, 28om2uzsuci 12027 . . . . . 6  |-  ( v  e.  om  ->  ( G `  suc  v )  =  ( ( G `
 v )  +  1 ) )
6463adantr 465 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( G `
 suc  v )  =  ( ( G `
 v )  +  1 ) )
6562fveq2d 5870 . . . . . 6  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( 2nd `  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
)
66 ovex 6309 . . . . . . 7  |-  ( ( G `  v )  +  1 )  e. 
_V
67 ovex 6309 . . . . . . 7  |-  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )  e.  _V
6866, 67op2nd 6793 . . . . . 6  |-  ( 2nd `  <. ( ( G `
 v )  +  1 ) ,  ( ( G `  v
) F ( 2nd `  ( R `  v
) ) ) >.
)  =  ( ( G `  v ) F ( 2nd `  ( R `  v )
) )
6965, 68syl6eq 2524 . . . . 5  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( 2nd `  ( R `  suc  v ) )  =  ( ( G `  v ) F ( 2nd `  ( R `
 v ) ) ) )
7064, 69opeq12d 4221 . . . 4  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  <. ( G `  suc  v ) ,  ( 2nd `  ( R `  suc  v ) ) >.  =  <. ( ( G `  v
)  +  1 ) ,  ( ( G `
 v ) F ( 2nd `  ( R `  v )
) ) >. )
7162, 70eqtr4d 2511 . . 3  |-  ( ( v  e.  om  /\  ( R `  v )  =  <. ( G `  v ) ,  ( 2nd `  ( R `
 v ) )
>. )  ->  ( R `
 suc  v )  =  <. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. )
7271ex 434 . 2  |-  ( v  e.  om  ->  (
( R `  v
)  =  <. ( G `  v ) ,  ( 2nd `  ( R `  v )
) >.  ->  ( R `  suc  v )  = 
<. ( G `  suc  v ) ,  ( 2nd `  ( R `
 suc  v )
) >. ) )
735, 10, 15, 20, 36, 72finds 6710 1  |-  ( B  e.  om  ->  ( R `  B )  =  <. ( G `  B ) ,  ( 2nd `  ( R `
 B ) )
>. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   (/)c0 3785   <.cop 4033    |-> cmpt 4505   suc csuc 4880    |` cres 5001   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286   omcom 6684   2ndc2nd 6783   reccrdg 7075   1c1 9493    + caddc 9495   ZZcz 10864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-2nd 6785  df-recs 7042  df-rdg 7076
This theorem is referenced by:  uzrdglem  12036  uzrdgfni  12037  uzrdgsuci  12039
  Copyright terms: Public domain W3C validator