MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Unicode version

Theorem om2uzlti 12100
Description: Less-than relation for  G (see om2uz0i 12097). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlti  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlti
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2475 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
2 fveq2 5848 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
32breq2d 4406 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
41, 3imbi12d 318 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
54imbi2d 314 . . 3  |-  ( z  =  (/)  ->  ( ( A  e.  om  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
6 eleq2 2475 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
7 fveq2 5848 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
87breq2d 4406 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
96, 8imbi12d 318 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
109imbi2d 314 . . 3  |-  ( z  =  y  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  y  ->  ( G `
 A )  < 
( G `  y
) ) ) ) )
11 eleq2 2475 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
12 fveq2 5848 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1312breq2d 4406 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1411, 13imbi12d 318 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1514imbi2d 314 . . 3  |-  ( z  =  suc  y  -> 
( ( A  e. 
om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
16 eleq2 2475 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
17 fveq2 5848 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1817breq2d 4406 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
1916, 18imbi12d 318 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2019imbi2d 314 . . 3  |-  ( z  =  B  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  ( G `
 A )  < 
( G `  B
) ) ) ) )
21 noel 3741 . . . . 5  |-  -.  A  e.  (/)
2221pm2.21i 131 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2322a1i 11 . . 3  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) )
24 id 22 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
25 fveq2 5848 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2724, 26orim12d 839 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
28 elsuc2g 5477 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
2928bicomd 201 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3029adantl 464 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
31 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
32 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3331, 32om2uzsuci 12098 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  suc  y )  =  ( ( G `
 y )  +  1 ) )
3433breq2d 4406 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( G `  A
)  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
3534adantl 464 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <  ( G `  suc  y )  <-> 
( G `  A
)  <  ( ( G `  y )  +  1 ) ) )
3631, 32om2uzuzi 12099 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
3731, 32om2uzuzi 12099 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  C )
)
38 eluzelz 11135 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
39 eluzelz 11135 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
40 zleltp1 10954 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4138, 39, 40syl2an 475 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4236, 37, 41syl2an 475 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4336, 38syl 17 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( G `  A )  e.  ZZ )
4443zred 11007 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
4537, 39syl 17 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  ZZ )
4645zred 11007 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  RR )
47 leloe 9701 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  RR  /\  ( G `  y )  e.  RR )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4844, 46, 47syl2an 475 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4935, 42, 483bitr2rd 282 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5030, 49imbi12d 318 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  -> 
( ( G `  A )  <  ( G `  y )  \/  ( G `  A
)  =  ( G `
 y ) ) )  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5127, 50syl5ib 219 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5251expcom 433 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
5352a2d 26 . . 3  |-  ( y  e.  om  ->  (
( A  e.  om  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )  ->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A
)  <  ( G `  suc  y ) ) ) ) )
545, 10, 15, 20, 23, 53finds 6709 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  -> 
( G `  A
)  <  ( G `  B ) ) ) )
5554impcom 428 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058   (/)c0 3737   class class class wbr 4394    |-> cmpt 4452    |` cres 4824   suc csuc 5411   ` cfv 5568  (class class class)co 6277   omcom 6682   reccrdg 7111   RRcr 9520   1c1 9522    + caddc 9524    < clt 9657    <_ cle 9658   ZZcz 10904   ZZ>=cuz 11126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-n0 10836  df-z 10905  df-uz 11127
This theorem is referenced by:  om2uzlt2i  12101  om2uzf1oi  12103
  Copyright terms: Public domain W3C validator