MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlti Structured version   Unicode version

Theorem om2uzlti 11772
Description: Less-than relation for  G (see om2uz0i 11769). (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlti  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlti
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2503 . . . . 5  |-  ( z  =  (/)  ->  ( A  e.  z  <->  A  e.  (/) ) )
2 fveq2 5690 . . . . . 6  |-  ( z  =  (/)  ->  ( G `
 z )  =  ( G `  (/) ) )
32breq2d 4303 . . . . 5  |-  ( z  =  (/)  ->  ( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  (/) ) ) )
41, 3imbi12d 320 . . . 4  |-  ( z  =  (/)  ->  ( ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) )  <->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) ) )
54imbi2d 316 . . 3  |-  ( z  =  (/)  ->  ( ( A  e.  om  ->  ( A  e.  z  -> 
( G `  A
)  <  ( G `  z ) ) )  <-> 
( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A
)  <  ( G `  (/) ) ) ) ) )
6 eleq2 2503 . . . . 5  |-  ( z  =  y  ->  ( A  e.  z  <->  A  e.  y ) )
7 fveq2 5690 . . . . . 6  |-  ( z  =  y  ->  ( G `  z )  =  ( G `  y ) )
87breq2d 4303 . . . . 5  |-  ( z  =  y  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  y )
) )
96, 8imbi12d 320 . . . 4  |-  ( z  =  y  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) ) )
109imbi2d 316 . . 3  |-  ( z  =  y  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  y  ->  ( G `
 A )  < 
( G `  y
) ) ) ) )
11 eleq2 2503 . . . . 5  |-  ( z  =  suc  y  -> 
( A  e.  z  <-> 
A  e.  suc  y
) )
12 fveq2 5690 . . . . . 6  |-  ( z  =  suc  y  -> 
( G `  z
)  =  ( G `
 suc  y )
)
1312breq2d 4303 . . . . 5  |-  ( z  =  suc  y  -> 
( ( G `  A )  <  ( G `  z )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
1411, 13imbi12d 320 . . . 4  |-  ( z  =  suc  y  -> 
( ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
1514imbi2d 316 . . 3  |-  ( z  =  suc  y  -> 
( ( A  e. 
om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
16 eleq2 2503 . . . . 5  |-  ( z  =  B  ->  ( A  e.  z  <->  A  e.  B ) )
17 fveq2 5690 . . . . . 6  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
1817breq2d 4303 . . . . 5  |-  ( z  =  B  ->  (
( G `  A
)  <  ( G `  z )  <->  ( G `  A )  <  ( G `  B )
) )
1916, 18imbi12d 320 . . . 4  |-  ( z  =  B  ->  (
( A  e.  z  ->  ( G `  A )  <  ( G `  z )
)  <->  ( A  e.  B  ->  ( G `  A )  <  ( G `  B )
) ) )
2019imbi2d 316 . . 3  |-  ( z  =  B  ->  (
( A  e.  om  ->  ( A  e.  z  ->  ( G `  A )  <  ( G `  z )
) )  <->  ( A  e.  om  ->  ( A  e.  B  ->  ( G `
 A )  < 
( G `  B
) ) ) ) )
21 noel 3640 . . . . 5  |-  -.  A  e.  (/)
2221pm2.21i 131 . . . 4  |-  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) )
2322a1i 11 . . 3  |-  ( A  e.  om  ->  ( A  e.  (/)  ->  ( G `  A )  <  ( G `  (/) ) ) )
24 id 22 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )
25 fveq2 5690 . . . . . . . 8  |-  ( A  =  y  ->  ( G `  A )  =  ( G `  y ) )
2625a1i 11 . . . . . . 7  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( A  =  y  ->  ( G `  A )  =  ( G `  y ) ) )
2724, 26orim12d 834 . . . . . 6  |-  ( ( A  e.  y  -> 
( G `  A
)  <  ( G `  y ) )  -> 
( ( A  e.  y  \/  A  =  y )  ->  (
( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
28 elsuc2g 4786 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A  e.  suc  y  <->  ( A  e.  y  \/  A  =  y ) ) )
2928bicomd 201 . . . . . . . 8  |-  ( y  e.  om  ->  (
( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
3029adantl 466 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  \/  A  =  y )  <->  A  e.  suc  y ) )
31 om2uz.1 . . . . . . . . . . 11  |-  C  e.  ZZ
32 om2uz.2 . . . . . . . . . . 11  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3331, 32om2uzsuci 11770 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  suc  y )  =  ( ( G `
 y )  +  1 ) )
3433breq2d 4303 . . . . . . . . 9  |-  ( y  e.  om  ->  (
( G `  A
)  <  ( G `  suc  y )  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
3534adantl 466 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <  ( G `  suc  y )  <-> 
( G `  A
)  <  ( ( G `  y )  +  1 ) ) )
3631, 32om2uzuzi 11771 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
3731, 32om2uzuzi 11771 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  C )
)
38 eluzelz 10869 . . . . . . . . . 10  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  ZZ )
39 eluzelz 10869 . . . . . . . . . 10  |-  ( ( G `  y )  e.  ( ZZ>= `  C
)  ->  ( G `  y )  e.  ZZ )
40 zleltp1 10694 . . . . . . . . . 10  |-  ( ( ( G `  A
)  e.  ZZ  /\  ( G `  y )  e.  ZZ )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4138, 39, 40syl2an 477 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  ( ZZ>= `  C )  /\  ( G `  y )  e.  ( ZZ>= `  C )
)  ->  ( ( G `  A )  <_  ( G `  y
)  <->  ( G `  A )  <  (
( G `  y
)  +  1 ) ) )
4236, 37, 41syl2an 477 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( G `  A )  <  ( ( G `
 y )  +  1 ) ) )
4336, 38syl 16 . . . . . . . . . 10  |-  ( A  e.  om  ->  ( G `  A )  e.  ZZ )
4443zred 10746 . . . . . . . . 9  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
4537, 39syl 16 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  ZZ )
4645zred 10746 . . . . . . . . 9  |-  ( y  e.  om  ->  ( G `  y )  e.  RR )
47 leloe 9460 . . . . . . . . 9  |-  ( ( ( G `  A
)  e.  RR  /\  ( G `  y )  e.  RR )  -> 
( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4844, 46, 47syl2an 477 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( G `  A )  <_  ( G `  y )  <->  ( ( G `  A
)  <  ( G `  y )  \/  ( G `  A )  =  ( G `  y ) ) ) )
4935, 42, 483bitr2rd 282 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( G `
 A )  < 
( G `  y
)  \/  ( G `
 A )  =  ( G `  y
) )  <->  ( G `  A )  <  ( G `  suc  y ) ) )
5030, 49imbi12d 320 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( ( A  e.  y  \/  A  =  y )  -> 
( ( G `  A )  <  ( G `  y )  \/  ( G `  A
)  =  ( G `
 y ) ) )  <->  ( A  e. 
suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5127, 50syl5ib 219 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) )
5251expcom 435 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
)  ->  ( A  e.  suc  y  ->  ( G `  A )  <  ( G `  suc  y ) ) ) ) )
5352a2d 26 . . 3  |-  ( y  e.  om  ->  (
( A  e.  om  ->  ( A  e.  y  ->  ( G `  A )  <  ( G `  y )
) )  ->  ( A  e.  om  ->  ( A  e.  suc  y  ->  ( G `  A
)  <  ( G `  suc  y ) ) ) ) )
545, 10, 15, 20, 23, 53finds 6501 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  e.  B  -> 
( G `  A
)  <  ( G `  B ) ) ) )
5554impcom 430 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2971   (/)c0 3636   class class class wbr 4291    e. cmpt 4349   suc csuc 4720    |` cres 4841   ` cfv 5417  (class class class)co 6090   omcom 6475   reccrdg 6864   RRcr 9280   1c1 9282    + caddc 9284    < clt 9417    <_ cle 9418   ZZcz 10645   ZZ>=cuz 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6831  df-rdg 6865  df-er 7100  df-en 7310  df-dom 7311  df-sdom 7312  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-n0 10579  df-z 10646  df-uz 10861
This theorem is referenced by:  om2uzlt2i  11773  om2uzf1oi  11775
  Copyright terms: Public domain W3C validator