MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uzlt2i Structured version   Unicode version

Theorem om2uzlt2i 11774
Description: The mapping  G (see om2uz0i 11770) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uzlt2i  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    G( x)

Proof of Theorem om2uzlt2i
StepHypRef Expression
1 om2uz.1 . . 3  |-  C  e.  ZZ
2 om2uz.2 . . 3  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
31, 2om2uzlti 11773 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  ( G `  A
)  <  ( G `  B ) ) )
41, 2om2uzlti 11773 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  e.  A  ->  ( G `  B
)  <  ( G `  A ) ) )
5 fveq2 5691 . . . . . 6  |-  ( B  =  A  ->  ( G `  B )  =  ( G `  A ) )
65a1i 11 . . . . 5  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( B  =  A  ->  ( G `  B )  =  ( G `  A ) ) )
74, 6orim12d 834 . . . 4  |-  ( ( B  e.  om  /\  A  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  ->  (
( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
87ancoms 453 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  ->  (
( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
9 nnon 6482 . . . 4  |-  ( B  e.  om  ->  B  e.  On )
10 nnon 6482 . . . 4  |-  ( A  e.  om  ->  A  e.  On )
11 onsseleq 4760 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  ( B  e.  A  \/  B  =  A )
) )
12 ontri1 4753 . . . . 5  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( B  C_  A  <->  -.  A  e.  B ) )
1311, 12bitr3d 255 . . . 4  |-  ( ( B  e.  On  /\  A  e.  On )  ->  ( ( B  e.  A  \/  B  =  A )  <->  -.  A  e.  B ) )
149, 10, 13syl2anr 478 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( B  e.  A  \/  B  =  A )  <->  -.  A  e.  B ) )
151, 2om2uzuzi 11772 . . . . 5  |-  ( B  e.  om  ->  ( G `  B )  e.  ( ZZ>= `  C )
)
16 eluzelre 10871 . . . . 5  |-  ( ( G `  B )  e.  ( ZZ>= `  C
)  ->  ( G `  B )  e.  RR )
1715, 16syl 16 . . . 4  |-  ( B  e.  om  ->  ( G `  B )  e.  RR )
181, 2om2uzuzi 11772 . . . . 5  |-  ( A  e.  om  ->  ( G `  A )  e.  ( ZZ>= `  C )
)
19 eluzelre 10871 . . . . 5  |-  ( ( G `  A )  e.  ( ZZ>= `  C
)  ->  ( G `  A )  e.  RR )
2018, 19syl 16 . . . 4  |-  ( A  e.  om  ->  ( G `  A )  e.  RR )
21 leloe 9461 . . . . 5  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( G `  B )  <_  ( G `  A )  <->  ( ( G `  B
)  <  ( G `  A )  \/  ( G `  B )  =  ( G `  A ) ) ) )
22 lenlt 9453 . . . . 5  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( G `  B )  <_  ( G `  A )  <->  -.  ( G `  A
)  <  ( G `  B ) ) )
2321, 22bitr3d 255 . . . 4  |-  ( ( ( G `  B
)  e.  RR  /\  ( G `  A )  e.  RR )  -> 
( ( ( G `
 B )  < 
( G `  A
)  \/  ( G `
 B )  =  ( G `  A
) )  <->  -.  ( G `  A )  <  ( G `  B
) ) )
2417, 20, 23syl2anr 478 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( ( G `
 B )  < 
( G `  A
)  \/  ( G `
 B )  =  ( G `  A
) )  <->  -.  ( G `  A )  <  ( G `  B
) ) )
258, 14, 243imtr3d 267 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  A  e.  B  ->  -.  ( G `  A )  <  ( G `  B
) ) )
263, 25impcon4bid 205 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  <->  ( G `  A )  <  ( G `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972    C_ wss 3328   class class class wbr 4292    e. cmpt 4350   Oncon0 4719    |` cres 4842   ` cfv 5418  (class class class)co 6091   omcom 6476   reccrdg 6865   RRcr 9281   1c1 9283    + caddc 9285    < clt 9418    <_ cle 9419   ZZcz 10646   ZZ>=cuz 10861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-n0 10580  df-z 10647  df-uz 10862
This theorem is referenced by:  om2uzisoi  11777  unbenlem  13969
  Copyright terms: Public domain W3C validator