MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2uz0i Structured version   Unicode version

Theorem om2uz0i 11961
Description: The mapping  G is a one-to-one mapping from  om onto upper integers that will be used to construct a recursive definition generator. Ordinal natural number 0 maps to complex number  C (normally 0 for the upper integers  NN0 or 1 for the upper integers  NN), 1 maps to  C + 1, etc. This theorem shows the value of  G at ordinal natural number zero. (This series of theorems generalizes an earlier series for  NN0 contributed by Raph Levien, 10-Apr-2004.) (Contributed by NM, 3-Oct-2004.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
Assertion
Ref Expression
om2uz0i  |-  ( G `
 (/) )  =  C
Distinct variable group:    x, C
Allowed substitution hint:    G( x)

Proof of Theorem om2uz0i
StepHypRef Expression
1 om2uz.2 . . 3  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
21fveq1i 5775 . 2  |-  ( G `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )
3 om2uz.1 . . 3  |-  C  e.  ZZ
4 fr0g 7019 . . 3  |-  ( C  e.  ZZ  ->  (
( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )  =  C )
53, 4ax-mp 5 . 2  |-  ( ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om ) `  (/) )  =  C
62, 5eqtri 2411 1  |-  ( G `
 (/) )  =  C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399    e. wcel 1826   _Vcvv 3034   (/)c0 3711    |-> cmpt 4425    |` cres 4915   ` cfv 5496  (class class class)co 6196   omcom 6599   reccrdg 6993   1c1 9404    + caddc 9406   ZZcz 10781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-om 6600  df-recs 6960  df-rdg 6994
This theorem is referenced by:  om2uzuzi  11963  om2uzrani  11966  om2uzrdg  11970  uzrdgxfr  11980  fzennn  11981  axdc4uzlem  11995  hashgadd  12348
  Copyright terms: Public domain W3C validator