MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Unicode version

Theorem om1r 6980
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r  |-  ( A  e.  On  ->  ( 1o  .o  A )  =  A )

Proof of Theorem om1r
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6097 . . 3  |-  ( x  =  (/)  ->  ( 1o 
.o  x )  =  ( 1o  .o  (/) ) )
2 id 22 . . 3  |-  ( x  =  (/)  ->  x  =  (/) )
31, 2eqeq12d 2455 . 2  |-  ( x  =  (/)  ->  ( ( 1o  .o  x )  =  x  <->  ( 1o  .o  (/) )  =  (/) ) )
4 oveq2 6097 . . 3  |-  ( x  =  y  ->  ( 1o  .o  x )  =  ( 1o  .o  y
) )
5 id 22 . . 3  |-  ( x  =  y  ->  x  =  y )
64, 5eqeq12d 2455 . 2  |-  ( x  =  y  ->  (
( 1o  .o  x
)  =  x  <->  ( 1o  .o  y )  =  y ) )
7 oveq2 6097 . . 3  |-  ( x  =  suc  y  -> 
( 1o  .o  x
)  =  ( 1o 
.o  suc  y )
)
8 id 22 . . 3  |-  ( x  =  suc  y  ->  x  =  suc  y )
97, 8eqeq12d 2455 . 2  |-  ( x  =  suc  y  -> 
( ( 1o  .o  x )  =  x  <-> 
( 1o  .o  suc  y )  =  suc  y ) )
10 oveq2 6097 . . 3  |-  ( x  =  A  ->  ( 1o  .o  x )  =  ( 1o  .o  A
) )
11 id 22 . . 3  |-  ( x  =  A  ->  x  =  A )
1210, 11eqeq12d 2455 . 2  |-  ( x  =  A  ->  (
( 1o  .o  x
)  =  x  <->  ( 1o  .o  A )  =  A ) )
13 om0x 6957 . 2  |-  ( 1o 
.o  (/) )  =  (/)
14 1on 6925 . . . . . 6  |-  1o  e.  On
15 omsuc 6964 . . . . . 6  |-  ( ( 1o  e.  On  /\  y  e.  On )  ->  ( 1o  .o  suc  y )  =  ( ( 1o  .o  y
)  +o  1o ) )
1614, 15mpan 670 . . . . 5  |-  ( y  e.  On  ->  ( 1o  .o  suc  y )  =  ( ( 1o 
.o  y )  +o  1o ) )
17 oveq1 6096 . . . . 5  |-  ( ( 1o  .o  y )  =  y  ->  (
( 1o  .o  y
)  +o  1o )  =  ( y  +o  1o ) )
1816, 17sylan9eq 2493 . . . 4  |-  ( ( y  e.  On  /\  ( 1o  .o  y
)  =  y )  ->  ( 1o  .o  suc  y )  =  ( y  +o  1o ) )
19 oa1suc 6969 . . . . 5  |-  ( y  e.  On  ->  (
y  +o  1o )  =  suc  y )
2019adantr 465 . . . 4  |-  ( ( y  e.  On  /\  ( 1o  .o  y
)  =  y )  ->  ( y  +o  1o )  =  suc  y )
2118, 20eqtrd 2473 . . 3  |-  ( ( y  e.  On  /\  ( 1o  .o  y
)  =  y )  ->  ( 1o  .o  suc  y )  =  suc  y )
2221ex 434 . 2  |-  ( y  e.  On  ->  (
( 1o  .o  y
)  =  y  -> 
( 1o  .o  suc  y )  =  suc  y ) )
23 iuneq2 4185 . . . 4  |-  ( A. y  e.  x  ( 1o  .o  y )  =  y  ->  U_ y  e.  x  ( 1o  .o  y )  =  U_ y  e.  x  y
)
24 uniiun 4221 . . . 4  |-  U. x  =  U_ y  e.  x  y
2523, 24syl6eqr 2491 . . 3  |-  ( A. y  e.  x  ( 1o  .o  y )  =  y  ->  U_ y  e.  x  ( 1o  .o  y )  =  U. x )
26 vex 2973 . . . . 5  |-  x  e. 
_V
27 omlim 6971 . . . . . 6  |-  ( ( 1o  e.  On  /\  ( x  e.  _V  /\ 
Lim  x ) )  ->  ( 1o  .o  x )  =  U_ y  e.  x  ( 1o  .o  y ) )
2814, 27mpan 670 . . . . 5  |-  ( ( x  e.  _V  /\  Lim  x )  ->  ( 1o  .o  x )  = 
U_ y  e.  x  ( 1o  .o  y
) )
2926, 28mpan 670 . . . 4  |-  ( Lim  x  ->  ( 1o  .o  x )  =  U_ y  e.  x  ( 1o  .o  y ) )
30 limuni 4777 . . . 4  |-  ( Lim  x  ->  x  =  U. x )
3129, 30eqeq12d 2455 . . 3  |-  ( Lim  x  ->  ( ( 1o  .o  x )  =  x  <->  U_ y  e.  x  ( 1o  .o  y
)  =  U. x
) )
3225, 31syl5ibr 221 . 2  |-  ( Lim  x  ->  ( A. y  e.  x  ( 1o  .o  y )  =  y  ->  ( 1o  .o  x )  =  x ) )
333, 6, 9, 12, 13, 22, 32tfinds 6468 1  |-  ( A  e.  On  ->  ( 1o  .o  A )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2713   _Vcvv 2970   (/)c0 3635   U.cuni 4089   U_ciun 4169   Oncon0 4717   Lim wlim 4718   suc csuc 4719  (class class class)co 6089   1oc1o 6911    +o coa 6915    .o comu 6916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-omul 6923
This theorem is referenced by:  oe1  6981  omword2  7011
  Copyright terms: Public domain W3C validator