Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  olj01 Structured version   Unicode version

Theorem olj01 34378
Description: An ortholattice element joined with zero equals itself. (chj0 26229 analog.) (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
olj0.b  |-  B  =  ( Base `  K
)
olj0.j  |-  .\/  =  ( join `  K )
olj0.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
olj01  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  .\/  .0.  )  =  X )

Proof of Theorem olj01
StepHypRef Expression
1 olop 34367 . . . 4  |-  ( K  e.  OL  ->  K  e.  OP )
2 olj0.b . . . . 5  |-  B  =  ( Base `  K
)
3 olj0.z . . . . 5  |-  .0.  =  ( 0. `  K )
42, 3op0cl 34337 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
51, 4syl 16 . . 3  |-  ( K  e.  OL  ->  .0.  e.  B )
65adantr 465 . 2  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  e.  B )
7 eqid 2467 . . 3  |-  ( le
`  K )  =  ( le `  K
)
8 ollat 34366 . . . 4  |-  ( K  e.  OL  ->  K  e.  Lat )
983ad2ant1 1017 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  K  e.  Lat )
10 olj0.j . . . . 5  |-  .\/  =  ( join `  K )
112, 10latjcl 15555 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  .\/  .0.  )  e.  B )
128, 11syl3an1 1261 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  .\/  .0.  )  e.  B )
13 simp2 997 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  X  e.  B )
142, 7latref 15557 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B )  ->  X ( le `  K ) X )
158, 14sylan 471 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  X ( le `  K ) X )
16153adant3 1016 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  X ( le `  K ) X )
172, 7, 3op0le 34339 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  ( le `  K ) X )
181, 17sylan 471 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  .0.  ( le `  K ) X )
19183adant3 1016 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  .0.  ( le `  K
) X )
20 simp3 998 . . . . 5  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  .0.  e.  B )
212, 7, 10latjle12 15566 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  .0.  e.  B  /\  X  e.  B )
)  ->  ( ( X ( le `  K ) X  /\  .0.  ( le `  K
) X )  <->  ( X  .\/  .0.  ) ( le
`  K ) X ) )
229, 13, 20, 13, 21syl13anc 1230 . . . 4  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  -> 
( ( X ( le `  K ) X  /\  .0.  ( le `  K ) X )  <->  ( X  .\/  .0.  ) ( le `  K ) X ) )
2316, 19, 22mpbi2and 919 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  .\/  .0.  ) ( le `  K ) X )
242, 7, 10latlej1 15564 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  .0.  e.  B )  ->  X ( le `  K ) ( X 
.\/  .0.  ) )
258, 24syl3an1 1261 . . 3  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  ->  X ( le `  K ) ( X 
.\/  .0.  ) )
262, 7, 9, 12, 13, 23, 25latasymd 15561 . 2  |-  ( ( K  e.  OL  /\  X  e.  B  /\  .0.  e.  B )  -> 
( X  .\/  .0.  )  =  X )
276, 26mpd3an3 1325 1  |-  ( ( K  e.  OL  /\  X  e.  B )  ->  ( X  .\/  .0.  )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   Basecbs 14507   lecple 14579   joincjn 15448   0.cp0 15541   Latclat 15549   OPcops 34325   OLcol 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-oposet 34329  df-ol 34331
This theorem is referenced by:  olj02  34379  olm11  34380  omllaw3  34398  omlspjN  34414  2at0mat0  34677  lhp2at0nle  35187  lhple  35194  cdlemc6  35348  cdleme3c  35382  cdleme7e  35399  cdlemednpq  35451  cdlemefrs29pre00  35547  cdlemefrs29bpre0  35548  cdlemefrs29cpre1  35550  cdleme32fva  35589  cdleme42ke  35637  cdlemg12e  35799  cdlemg31d  35852  trljco  35892  cdlemkid2  36076  dihvalcqat  36392  dihmeetlem7N  36463  dihjatc1  36464  djh01  36565
  Copyright terms: Public domain W3C validator