MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  olcs Structured version   Unicode version

Theorem olcs 395
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
olcs.1  |-  ( (
ph  \/  ps )  ->  ch )
Assertion
Ref Expression
olcs  |-  ( ps 
->  ch )

Proof of Theorem olcs
StepHypRef Expression
1 olcs.1 . . 3  |-  ( (
ph  \/  ps )  ->  ch )
21orcoms 389 . 2  |-  ( ( ps  \/  ph )  ->  ch )
32orcs 394 1  |-  ( ps 
->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  0nn0  10806  fsum00  13568  pcfac  14270  mndifsplit  18902  bposlem2  23285  axcgrid  23892  3o2cs  27043  3o3cs  27044  itg2addnclem  29641
  Copyright terms: Public domain W3C validator