MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oismo Structured version   Unicode version

Theorem oismo 7999
Description: When  A is a subclass of  On,  F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of  A). The proof avoids ax-rep 4507 (the second statement is trivial under ax-rep 4507). (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oismo.1  |-  F  = OrdIso
(  _E  ,  A
)
Assertion
Ref Expression
oismo  |-  ( A 
C_  On  ->  ( Smo 
F  /\  ran  F  =  A ) )

Proof of Theorem oismo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epweon 6601 . . . . . 6  |-  _E  We  On
2 wess 4810 . . . . . 6  |-  ( A 
C_  On  ->  (  _E  We  On  ->  _E  We  A ) )
31, 2mpi 20 . . . . 5  |-  ( A 
C_  On  ->  _E  We  A )
4 epse 4806 . . . . 5  |-  _E Se  A
5 oismo.1 . . . . . 6  |-  F  = OrdIso
(  _E  ,  A
)
65oiiso2 7990 . . . . 5  |-  ( (  _E  We  A  /\  _E Se  A )  ->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F
) )
73, 4, 6sylancl 660 . . . 4  |-  ( A 
C_  On  ->  F  Isom  _E  ,  _E  ( dom 
F ,  ran  F
) )
85oicl 7988 . . . . 5  |-  Ord  dom  F
95oif 7989 . . . . . . 7  |-  F : dom  F --> A
10 frn 5720 . . . . . . 7  |-  ( F : dom  F --> A  ->  ran  F  C_  A )
119, 10ax-mp 5 . . . . . 6  |-  ran  F  C_  A
12 id 22 . . . . . 6  |-  ( A 
C_  On  ->  A  C_  On )
1311, 12syl5ss 3453 . . . . 5  |-  ( A 
C_  On  ->  ran  F  C_  On )
14 smoiso2 7073 . . . . 5  |-  ( ( Ord  dom  F  /\  ran  F  C_  On )  ->  ( ( F : dom  F -onto-> ran  F  /\  Smo  F )  <->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F ) ) )
158, 13, 14sylancr 661 . . . 4  |-  ( A 
C_  On  ->  ( ( F : dom  F -onto-> ran  F  /\  Smo  F
)  <->  F  Isom  _E  ,  _E  ( dom  F ,  ran  F ) ) )
167, 15mpbird 232 . . 3  |-  ( A 
C_  On  ->  ( F : dom  F -onto-> ran  F  /\  Smo  F ) )
1716simprd 461 . 2  |-  ( A 
C_  On  ->  Smo  F
)
1811a1i 11 . . 3  |-  ( A 
C_  On  ->  ran  F  C_  A )
19 simprl 756 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  x  e.  A )
203adantr 463 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  _E  We  A )
214a1i 11 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  _E Se  A )
22 ffn 5714 . . . . . . . . . . . . 13  |-  ( F : dom  F --> A  ->  F  Fn  dom  F )
239, 22mp1i 13 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  Fn  dom  F )
24 simplrr 763 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  -.  x  e.  ran  F )
253ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  _E  We  A )
264a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  _E Se  A )
27 simplrl 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  x  e.  A )
28 simpr 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  dom  F
)
295oiiniseg 7992 . . . . . . . . . . . . . . . . 17  |-  ( ( (  _E  We  A  /\  _E Se  A )  /\  ( x  e.  A  /\  y  e.  dom  F ) )  ->  (
( F `  y
)  _E  x  \/  x  e.  ran  F
) )
3025, 26, 27, 28, 29syl22anc 1231 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( ( F `  y )  _E  x  \/  x  e.  ran  F ) )
3130ord 375 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( -.  ( F `
 y )  _E  x  ->  x  e.  ran  F ) )
3224, 31mt3d 125 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( F `  y
)  _E  x )
33 vex 3062 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
3433epelc 4736 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  _E  x  <->  ( F `  y )  e.  x
)
3532, 34sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  x )
3635ralrimiva 2818 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  A. y  e.  dom  F ( F `
 y )  e.  x )
37 ffnfv 6036 . . . . . . . . . . . 12  |-  ( F : dom  F --> x  <->  ( F  Fn  dom  F  /\  A. y  e.  dom  F ( F `  y )  e.  x ) )
3823, 36, 37sylanbrc 662 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F : dom  F --> x )
399, 22mp1i 13 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  F  Fn  dom  F )
4017ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  Smo  F )
41 smogt 7071 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  dom  F  /\  Smo  F  /\  y  e.  dom  F )  -> 
y  C_  ( F `  y ) )
4239, 40, 28, 41syl3anc 1230 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  C_  ( F `  y ) )
43 ordelon 5434 . . . . . . . . . . . . . . . . 17  |-  ( ( Ord  dom  F  /\  y  e.  dom  F )  ->  y  e.  On )
448, 28, 43sylancr 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  On )
45 simpll 752 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  A  C_  On )
4645, 27sseldd 3443 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  ->  x  e.  On )
47 ontr2 5457 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  x  e.  On )  ->  ( ( y  C_  ( F `  y )  /\  ( F `  y )  e.  x
)  ->  y  e.  x ) )
4844, 46, 47syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
( ( y  C_  ( F `  y )  /\  ( F `  y )  e.  x
)  ->  y  e.  x ) )
4942, 35, 48mp2and 677 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  On  /\  ( x  e.  A  /\  -.  x  e.  ran  F ) )  /\  y  e.  dom  F )  -> 
y  e.  x )
5049ex 432 . . . . . . . . . . . . 13  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  (
y  e.  dom  F  ->  y  e.  x ) )
5150ssrdv 3448 . . . . . . . . . . . 12  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  dom  F 
C_  x )
5219, 51ssexd 4541 . . . . . . . . . . 11  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  dom  F  e.  _V )
53 fex2 6739 . . . . . . . . . . 11  |-  ( ( F : dom  F --> x  /\  dom  F  e. 
_V  /\  x  e.  A )  ->  F  e.  _V )
5438, 52, 19, 53syl3anc 1230 . . . . . . . . . 10  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  e.  _V )
555ordtype2 7993 . . . . . . . . . 10  |-  ( (  _E  We  A  /\  _E Se  A  /\  F  e. 
_V )  ->  F  Isom  _E  ,  _E  ( dom  F ,  A ) )
5620, 21, 54, 55syl3anc 1230 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  F  Isom  _E  ,  _E  ( dom  F ,  A ) )
57 isof1o 6204 . . . . . . . . 9  |-  ( F 
Isom  _E  ,  _E  ( dom  F ,  A
)  ->  F : dom  F -1-1-onto-> A )
58 f1ofo 5806 . . . . . . . . 9  |-  ( F : dom  F -1-1-onto-> A  ->  F : dom  F -onto-> A
)
59 forn 5781 . . . . . . . . 9  |-  ( F : dom  F -onto-> A  ->  ran  F  =  A )
6056, 57, 58, 594syl 19 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  ran  F  =  A )
6119, 60eleqtrrd 2493 . . . . . . 7  |-  ( ( A  C_  On  /\  (
x  e.  A  /\  -.  x  e.  ran  F ) )  ->  x  e.  ran  F )
6261expr 613 . . . . . 6  |-  ( ( A  C_  On  /\  x  e.  A )  ->  ( -.  x  e.  ran  F  ->  x  e.  ran  F ) )
6362pm2.18d 111 . . . . 5  |-  ( ( A  C_  On  /\  x  e.  A )  ->  x  e.  ran  F )
6463ex 432 . . . 4  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  ran  F ) )
6564ssrdv 3448 . . 3  |-  ( A 
C_  On  ->  A  C_  ran  F )
6618, 65eqssd 3459 . 2  |-  ( A 
C_  On  ->  ran  F  =  A )
6717, 66jca 530 1  |-  ( A 
C_  On  ->  ( Smo 
F  /\  ran  F  =  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   _Vcvv 3059    C_ wss 3414   class class class wbr 4395    _E cep 4732   Se wse 4780    We wwe 4781   dom cdm 4823   ran crn 4824   Ord word 5409   Oncon0 5410    Fn wfn 5564   -->wf 5565   -onto->wfo 5567   -1-1-onto->wf1o 5568   ` cfv 5569    Isom wiso 5570   Smo wsmo 7049  OrdIsocoi 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-wrecs 7013  df-smo 7050  df-recs 7075  df-oi 7969
This theorem is referenced by:  oiid  8000  hsmexlem1  8838  hsmexlem2  8839
  Copyright terms: Public domain W3C validator