MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiiso Structured version   Unicode version

Theorem oiiso 7960
Description: The order isomorphism of the well-order  R on  A is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oiiso  |-  ( ( A  e.  V  /\  R  We  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )

Proof of Theorem oiiso
StepHypRef Expression
1 exse 4829 . 2  |-  ( A  e.  V  ->  R Se  A )
2 oicl.1 . . . 4  |-  F  = OrdIso
( R ,  A
)
32ordtype 7955 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
43ancoms 453 . 2  |-  ( ( R Se  A  /\  R  We  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
51, 4sylan 471 1  |-  ( ( A  e.  V  /\  R  We  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802    _E cep 4775   Se wse 4822    We wwe 4823   dom cdm 4985    Isom wiso 5575  OrdIsocoi 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-recs 7040  df-oi 7933
This theorem is referenced by:  oien  7961  wofib  7968  cantnfle  8088  cantnflt  8089  cantnflt2  8090  cantnfp1lem3  8097  cantnflem1b  8103  cantnflem1d  8105  cantnflem1  8106  cantnfleOLD  8118  cantnfltOLD  8119  cantnflt2OLD  8120  cantnfp1lem3OLD  8123  cantnflem1bOLD  8126  cantnflem1dOLD  8128  cantnflem1OLD  8129  wemapwe  8137  wemapweOLD  8138  cnfcomlem  8141  cnfcom  8142  cnfcom3lem  8145  cnfcomlemOLD  8149  cnfcomOLD  8150  cnfcom3lemOLD  8153  infxpenlem  8389  finnisoeu  8492  dfac12lem2  8522  cofsmo  8647  fpwwe2lem6  9011  fpwwe2lem7  9012  fpwwe2lem9  9014  pwfseqlem5  9039  fz1isolem  12484
  Copyright terms: Public domain W3C validator