MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiiniseg Structured version   Unicode version

Theorem oiiniseg 7853
Description:  ran  F is an initial segment of  A under the well-order  R. (Contributed by Mario Carneiro, 26-Jun-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oiiniseg  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( N  e.  A  /\  M  e.  dom  F ) )  ->  (
( F `  M
) R N  \/  N  e.  ran  F ) )

Proof of Theorem oiiniseg
Dummy variables  u  t  v  x  h  j  w  z  f 
i  r  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2452 . . . 4  |- recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
2 eqid 2452 . . . 4  |-  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 eqid 2452 . . . 4  |-  ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
41, 2, 3ordtypecbv 7837 . . 3  |- recs ( ( f  e.  _V  |->  (
iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
5 eqid 2452 . . 3  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e.  _V  |->  ( iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e. 
_V  |->  ( iota_ s  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }
6 oicl.1 . . 3  |-  F  = OrdIso
( R ,  A
)
7 simpl 457 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  R  We  A )
8 simpr 461 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  R Se  A )
94, 2, 3, 5, 6, 7, 8ordtypelem7 7844 . 2  |-  ( ( ( ( R  We  A  /\  R Se  A )  /\  N  e.  A
)  /\  M  e.  dom  F )  ->  (
( F `  M
) R N  \/  N  e.  ran  F ) )
109anasss 647 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( N  e.  A  /\  M  e.  dom  F ) )  ->  (
( F `  M
) R N  \/  N  e.  ran  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   E.wrex 2797   {crab 2800   _Vcvv 3072   class class class wbr 4395    |-> cmpt 4453   Se wse 4780    We wwe 4781   Oncon0 4822   dom cdm 4943   ran crn 4944   "cima 4946   ` cfv 5521   iota_crio 6155  recscrecs 6936  OrdIsocoi 7829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634  ax-un 6477
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-reu 2803  df-rmo 2804  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-pss 3447  df-nul 3741  df-if 3895  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4195  df-iun 4276  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4489  df-eprel 4735  df-id 4739  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-ord 4825  df-on 4826  df-lim 4827  df-suc 4828  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-f1 5526  df-fo 5527  df-f1o 5528  df-fv 5529  df-riota 6156  df-recs 6937  df-oi 7830
This theorem is referenced by:  oismo  7860
  Copyright terms: Public domain W3C validator