MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oif Structured version   Unicode version

Theorem oif 7946
Description: The order isomorphism of the well-order  R on  A is a function. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oif  |-  F : dom  F --> A

Proof of Theorem oif
Dummy variables  u  t  v  x  h  j  w  z  f 
i  r  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2462 . . . . 5  |- recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
2 eqid 2462 . . . . 5  |-  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 eqid 2462 . . . . 5  |-  ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
41, 2, 3ordtypecbv 7933 . . . 4  |- recs ( ( f  e.  _V  |->  (
iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
5 eqid 2462 . . . 4  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e.  _V  |->  ( iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e. 
_V  |->  ( iota_ s  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }
6 oicl.1 . . . 4  |-  F  = OrdIso
( R ,  A
)
7 simpl 457 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R  We  A )
8 simpr 461 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R Se  A )
94, 2, 3, 5, 6, 7, 8ordtypelem5 7938 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  /\  F : dom  F --> A ) )
109simprd 463 . 2  |-  ( ( R  We  A  /\  R Se  A )  ->  F : dom  F --> A )
11 f0 5759 . . 3  |-  (/) : (/) --> A
126oi0 7944 . . . 4  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F  =  (/) )
1312dmeqd 5198 . . . . 5  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  dom  (/) )
14 dm0 5209 . . . . 5  |-  dom  (/)  =  (/)
1513, 14syl6eq 2519 . . . 4  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  (/) )
1612, 15feq12d 5713 . . 3  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  ( F : dom  F --> A  <->  (/) : (/) --> A ) )
1711, 16mpbiri 233 . 2  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F : dom  F --> A )
1810, 17pm2.61i 164 1  |-  F : dom  F --> A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1374   A.wral 2809   E.wrex 2810   {crab 2813   _Vcvv 3108   (/)c0 3780   class class class wbr 4442    |-> cmpt 4500   Se wse 4831    We wwe 4832   Ord word 4872   Oncon0 4873   dom cdm 4994   ran crn 4995   "cima 4997   -->wf 5577   iota_crio 6237  recscrecs 7033  OrdIsocoi 7925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-se 4834  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-recs 7034  df-oi 7926
This theorem is referenced by:  oismo  7956  cantnfle  8081  cantnflt  8082  cantnfres  8087  cantnfp1lem3  8090  cantnflem1b  8096  cantnflem1  8099  cantnfleOLD  8111  cantnfltOLD  8112  cantnfp1lem3OLD  8116  cantnflem1bOLD  8119  cantnflem1OLD  8122  wemapwe  8130  wemapweOLD  8131  cnfcomlem  8134  cnfcom  8135  cnfcom3lem  8138  cnfcom3  8139  cnfcomlemOLD  8142  cnfcomOLD  8143  cnfcom3lemOLD  8146  cnfcom3OLD  8147  hsmexlem1  8797  hsmexlem2  8798  fpwwe2lem8  9006
  Copyright terms: Public domain W3C validator