MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oiexg Structured version   Unicode version

Theorem oiexg 7861
Description: The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oiexg  |-  ( A  e.  V  ->  F  e.  _V )

Proof of Theorem oiexg
StepHypRef Expression
1 oicl.1 . . . . 5  |-  F  = OrdIso
( R ,  A
)
21ordtype 7858 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
3 isof1o 6126 . . . 4  |-  ( F 
Isom  _E  ,  R  ( dom  F ,  A
)  ->  F : dom  F -1-1-onto-> A )
4 f1of1 5749 . . . 4  |-  ( F : dom  F -1-1-onto-> A  ->  F : dom  F -1-1-> A
)
52, 3, 43syl 20 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  F : dom  F -1-1-> A )
6 f1dmex 6658 . . . . 5  |-  ( ( F : dom  F -1-1-> A  /\  A  e.  V
)  ->  dom  F  e. 
_V )
7 f1f 5715 . . . . . 6  |-  ( F : dom  F -1-1-> A  ->  F : dom  F --> A )
8 fex 6060 . . . . . 6  |-  ( ( F : dom  F --> A  /\  dom  F  e. 
_V )  ->  F  e.  _V )
97, 8sylan 471 . . . . 5  |-  ( ( F : dom  F -1-1-> A  /\  dom  F  e. 
_V )  ->  F  e.  _V )
106, 9syldan 470 . . . 4  |-  ( ( F : dom  F -1-1-> A  /\  A  e.  V
)  ->  F  e.  _V )
1110expcom 435 . . 3  |-  ( A  e.  V  ->  ( F : dom  F -1-1-> A  ->  F  e.  _V )
)
125, 11syl5 32 . 2  |-  ( A  e.  V  ->  (
( R  We  A  /\  R Se  A )  ->  F  e.  _V )
)
131oi0 7854 . . 3  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F  =  (/) )
14 0ex 4531 . . 3  |-  (/)  e.  _V
1513, 14syl6eqel 2550 . 2  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F  e.  _V )
1612, 15pm2.61d1 159 1  |-  ( A  e.  V  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   (/)c0 3746    _E cep 4739   Se wse 4786    We wwe 4787   dom cdm 4949   -->wf 5523   -1-1->wf1 5524   -1-1-onto->wf1o 5526    Isom wiso 5528  OrdIsocoi 7835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-se 4789  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-isom 5536  df-riota 6162  df-recs 6943  df-oi 7836
This theorem is referenced by:  oion  7862  oien  7864  cantnfval  7988  cantnfvalOLD  8018  wemapwe  8040  wemapweOLD  8041  finnisoeu  8395  cofsmo  8550
  Copyright terms: Public domain W3C validator