MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieq1 Structured version   Unicode version

Theorem oieq1 7929
Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Assertion
Ref Expression
oieq1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )

Proof of Theorem oieq1
Dummy variables  h  j  t  u  v  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weeq1 4856 . . . 4  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
2 seeq1 4840 . . . 4  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)
31, 2anbi12d 708 . . 3  |-  ( R  =  S  ->  (
( R  We  A  /\  R Se  A )  <->  ( S  We  A  /\  S Se  A ) ) )
4 breq 4441 . . . . . . . . 9  |-  ( R  =  S  ->  (
j R w  <->  j S w ) )
54ralbidv 2893 . . . . . . . 8  |-  ( R  =  S  ->  ( A. j  e.  ran  h  j R w  <->  A. j  e.  ran  h  j S w ) )
65rabbidv 3098 . . . . . . 7  |-  ( R  =  S  ->  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j S w } )
7 breq 4441 . . . . . . . . 9  |-  ( R  =  S  ->  (
u R v  <->  u S
v ) )
87notbid 292 . . . . . . . 8  |-  ( R  =  S  ->  ( -.  u R v  <->  -.  u S v ) )
96, 8raleqbidv 3065 . . . . . . 7  |-  ( R  =  S  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
106, 9riotaeqbidv 6235 . . . . . 6  |-  ( R  =  S  ->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
1110mpteq2dv 4526 . . . . 5  |-  ( R  =  S  ->  (
h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
12 recseq 7035 . . . . 5  |-  ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )  -> recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1311, 12syl 16 . . . 4  |-  ( R  =  S  -> recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1413imaeq1d 5324 . . . . . . 7  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x )  =  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) )
15 breq 4441 . . . . . . 7  |-  ( R  =  S  ->  (
z R t  <->  z S
t ) )
1614, 15raleqbidv 3065 . . . . . 6  |-  ( R  =  S  ->  ( A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1716rexbidv 2965 . . . . 5  |-  ( R  =  S  ->  ( E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1817rabbidv 3098 . . . 4  |-  ( R  =  S  ->  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } )
1913, 18reseq12d 5263 . . 3  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } )  =  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) )
203, 19ifbieq1d 3952 . 2  |-  ( R  =  S  ->  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) ) )
21 df-oi 7927 . 2  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
22 df-oi 7927 . 2  |- OrdIso ( S ,  A )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) )
2320, 21, 223eqtr4g 2520 1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1398   A.wral 2804   E.wrex 2805   {crab 2808   _Vcvv 3106   (/)c0 3783   ifcif 3929   class class class wbr 4439    |-> cmpt 4497   Se wse 4825    We wwe 4826   Oncon0 4867   ran crn 4989    |` cres 4990   "cima 4991   iota_crio 6231  recscrecs 7033  OrdIsocoi 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-xp 4994  df-cnv 4996  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fv 5578  df-riota 6232  df-recs 7034  df-oi 7927
This theorem is referenced by:  hartogslem1  7959
  Copyright terms: Public domain W3C validator