MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieq1 Structured version   Unicode version

Theorem oieq1 8031
Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Assertion
Ref Expression
oieq1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )

Proof of Theorem oieq1
Dummy variables  h  j  t  u  v  w  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weeq1 4839 . . . 4  |-  ( R  =  S  ->  ( R  We  A  <->  S  We  A ) )
2 seeq1 4823 . . . 4  |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
)
31, 2anbi12d 716 . . 3  |-  ( R  =  S  ->  (
( R  We  A  /\  R Se  A )  <->  ( S  We  A  /\  S Se  A ) ) )
4 breq 4423 . . . . . . . . 9  |-  ( R  =  S  ->  (
j R w  <->  j S w ) )
54ralbidv 2865 . . . . . . . 8  |-  ( R  =  S  ->  ( A. j  e.  ran  h  j R w  <->  A. j  e.  ran  h  j S w ) )
65rabbidv 3073 . . . . . . 7  |-  ( R  =  S  ->  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j S w } )
7 breq 4423 . . . . . . . . 9  |-  ( R  =  S  ->  (
u R v  <->  u S
v ) )
87notbid 296 . . . . . . . 8  |-  ( R  =  S  ->  ( -.  u R v  <->  -.  u S v ) )
96, 8raleqbidv 3040 . . . . . . 7  |-  ( R  =  S  ->  ( A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v  <->  A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
106, 9riotaeqbidv 6268 . . . . . 6  |-  ( R  =  S  ->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v )  =  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )
1110mpteq2dv 4509 . . . . 5  |-  ( R  =  S  ->  (
h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
12 recseq 7098 . . . . 5  |-  ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) )  -> recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1311, 12syl 17 . . . 4  |-  ( R  =  S  -> recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) ) )
1413imaeq1d 5184 . . . . . . 7  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x )  =  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) )
15 breq 4423 . . . . . . 7  |-  ( R  =  S  ->  (
z R t  <->  z S
t ) )
1614, 15raleqbidv 3040 . . . . . 6  |-  ( R  =  S  ->  ( A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1716rexbidv 2940 . . . . 5  |-  ( R  =  S  ->  ( E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t  <->  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t ) )
1817rabbidv 3073 . . . 4  |-  ( R  =  S  ->  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } )
1913, 18reseq12d 5123 . . 3  |-  ( R  =  S  ->  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } )  =  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) )
203, 19ifbieq1d 3933 . 2  |-  ( R  =  S  ->  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) ) )
21 df-oi 8029 . 2  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" x ) z R t } ) ,  (/) )
22 df-oi 8029 . 2  |- OrdIso ( S ,  A )  =  if ( ( S  We  A  /\  S Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )  |`  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j S w }  -.  u S v ) ) )
" x ) z S t } ) ,  (/) )
2320, 21, 223eqtr4g 2489 1  |-  ( R  =  S  -> OrdIso ( R ,  A )  = OrdIso
( S ,  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1438   A.wral 2776   E.wrex 2777   {crab 2780   _Vcvv 3082   (/)c0 3762   ifcif 3910   class class class wbr 4421    |-> cmpt 4480   Se wse 4808    We wwe 4809   ran crn 4852    |` cres 4853   "cima 4854   Oncon0 5440   iota_crio 6264  recscrecs 7095  OrdIsocoi 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-br 4422  df-opab 4481  df-mpt 4482  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-cnv 4859  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-iota 5563  df-fv 5607  df-riota 6265  df-wrecs 7034  df-recs 7096  df-oi 8029
This theorem is referenced by:  hartogslem1  8061
  Copyright terms: Public domain W3C validator