MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oien Structured version   Unicode version

Theorem oien 7855
Description: The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oien  |-  ( ( A  e.  V  /\  R  We  A )  ->  dom  F  ~~  A
)

Proof of Theorem oien
StepHypRef Expression
1 oicl.1 . . . 4  |-  F  = OrdIso
( R ,  A
)
21oiexg 7852 . . 3  |-  ( A  e.  V  ->  F  e.  _V )
32adantr 465 . 2  |-  ( ( A  e.  V  /\  R  We  A )  ->  F  e.  _V )
41oiiso 7854 . . 3  |-  ( ( A  e.  V  /\  R  We  A )  ->  F  Isom  _E  ,  R  ( dom  F ,  A
) )
5 isof1o 6117 . . 3  |-  ( F 
Isom  _E  ,  R  ( dom  F ,  A
)  ->  F : dom  F -1-1-onto-> A )
64, 5syl 16 . 2  |-  ( ( A  e.  V  /\  R  We  A )  ->  F : dom  F -1-1-onto-> A
)
7 f1oen3g 7427 . 2  |-  ( ( F  e.  _V  /\  F : dom  F -1-1-onto-> A )  ->  dom  F  ~~  A )
83, 6, 7syl2anc 661 1  |-  ( ( A  e.  V  /\  R  We  A )  ->  dom  F  ~~  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3070   class class class wbr 4392    _E cep 4730    We wwe 4778   dom cdm 4940   -1-1-onto->wf1o 5517    Isom wiso 5519    ~~ cen 7409  OrdIsocoi 7826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-se 4780  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-recs 6934  df-en 7413  df-oi 7827
This theorem is referenced by:  hartogslem1  7859  wofib  7862  cantnfcl  7978  cantnff  7985  cantnf0  7986  cantnfp1lem2  7990  cantnflem1  8000  cantnf  8004  cantnfclOLD  8008  cantnfp1lem2OLD  8016  cantnflem1OLD  8023  cantnfOLD  8026  cnfcom2lem  8037  cnfcom2lemOLD  8045  finnisoeu  8386  dfac12lem2  8416  pwfseqlem5  8933  fz1isolem  12318
  Copyright terms: Public domain W3C validator