MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oicl Structured version   Unicode version

Theorem oicl 8044
Description: The order type of the well-order  R on  A is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oicl  |-  Ord  dom  F

Proof of Theorem oicl
Dummy variables  u  t  v  x  h  j  w  z  f 
i  r  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2429 . . . . 5  |- recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
2 eqid 2429 . . . . 5  |-  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 eqid 2429 . . . . 5  |-  ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
41, 2, 3ordtypecbv 8032 . . . 4  |- recs ( ( f  e.  _V  |->  (
iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
5 eqid 2429 . . . 4  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e.  _V  |->  ( iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e. 
_V  |->  ( iota_ s  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }
6 oicl.1 . . . 4  |-  F  = OrdIso
( R ,  A
)
7 simpl 458 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R  We  A )
8 simpr 462 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R Se  A )
94, 2, 3, 5, 6, 7, 8ordtypelem5 8037 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  /\  F : dom  F --> A ) )
109simpld 460 . 2  |-  ( ( R  We  A  /\  R Se  A )  ->  Ord  dom 
F )
11 ord0 5494 . . 3  |-  Ord  (/)
126oi0 8043 . . . . . 6  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F  =  (/) )
1312dmeqd 5057 . . . . 5  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  dom  (/) )
14 dm0 5068 . . . . 5  |-  dom  (/)  =  (/)
1513, 14syl6eq 2486 . . . 4  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  (/) )
16 ordeq 5449 . . . 4  |-  ( dom 
F  =  (/)  ->  ( Ord  dom  F  <->  Ord  (/) ) )
1715, 16syl 17 . . 3  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  <->  Ord  (/) ) )
1811, 17mpbiri 236 . 2  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  Ord  dom  F )
1910, 18pm2.61i 167 1  |-  Ord  dom  F
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    = wceq 1437   A.wral 2782   E.wrex 2783   {crab 2786   _Vcvv 3087   (/)c0 3767   class class class wbr 4426    |-> cmpt 4484   Se wse 4811    We wwe 4812   dom cdm 4854   ran crn 4855   "cima 4857   Ord word 5441   Oncon0 5442   -->wf 5597   iota_crio 6266  recscrecs 7097  OrdIsocoi 8024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-wrecs 7036  df-recs 7098  df-oi 8025
This theorem is referenced by:  oion  8051  oieu  8054  oismo  8055  oiid  8056  wofib  8060  cantnflt  8176  cantnfp1lem3  8184  cantnflem1b  8190  cantnflem1  8193  wemapwe  8201  cnfcomlem  8203  cnfcom  8204  cnfcom2lem  8205  infxpenlem  8443  hsmexlem1  8854  fpwwe2lem8  9061  fpwwe2lem9  9062  fpwwe2lem10  9063
  Copyright terms: Public domain W3C validator