MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oicl Structured version   Unicode version

Theorem oicl 7743
Description: The order type of the well-order  R on  A is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypothesis
Ref Expression
oicl.1  |-  F  = OrdIso
( R ,  A
)
Assertion
Ref Expression
oicl  |-  Ord  dom  F

Proof of Theorem oicl
Dummy variables  u  t  v  x  h  j  w  z  f 
i  r  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . 5  |- recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
2 eqid 2443 . . . . 5  |-  { w  e.  A  |  A. j  e.  ran  h  j R w }  =  { w  e.  A  |  A. j  e.  ran  h  j R w }
3 eqid 2443 . . . . 5  |-  ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )  =  ( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
41, 2, 3ordtypecbv 7731 . . . 4  |- recs ( ( f  e.  _V  |->  (
iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )  = recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
5 eqid 2443 . . . 4  |-  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e.  _V  |->  ( iota_ s  e.  { y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e.  { y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }  =  { x  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( f  e. 
_V  |->  ( iota_ s  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y } A. r  e. 
{ y  e.  A  |  A. i  e.  ran  f  i R y }  -.  r R s ) ) )
" x ) z R t }
6 oicl.1 . . . 4  |-  F  = OrdIso
( R ,  A
)
7 simpl 457 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R  We  A )
8 simpr 461 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  R Se  A )
94, 2, 3, 5, 6, 7, 8ordtypelem5 7736 . . 3  |-  ( ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  /\  F : dom  F --> A ) )
109simpld 459 . 2  |-  ( ( R  We  A  /\  R Se  A )  ->  Ord  dom 
F )
11 ord0 4771 . . 3  |-  Ord  (/)
126oi0 7742 . . . . . 6  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  F  =  (/) )
1312dmeqd 5042 . . . . 5  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  dom  (/) )
14 dm0 5053 . . . . 5  |-  dom  (/)  =  (/)
1513, 14syl6eq 2491 . . . 4  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  dom  F  =  (/) )
16 ordeq 4726 . . . 4  |-  ( dom 
F  =  (/)  ->  ( Ord  dom  F  <->  Ord  (/) ) )
1715, 16syl 16 . . 3  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  ( Ord  dom  F  <->  Ord  (/) ) )
1811, 17mpbiri 233 . 2  |-  ( -.  ( R  We  A  /\  R Se  A )  ->  Ord  dom  F )
1910, 18pm2.61i 164 1  |-  Ord  dom  F
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 184    /\ wa 369    = wceq 1369   A.wral 2715   E.wrex 2716   {crab 2719   _Vcvv 2972   (/)c0 3637   class class class wbr 4292    e. cmpt 4350   Se wse 4677    We wwe 4678   Ord word 4718   Oncon0 4719   dom cdm 4840   ran crn 4841   "cima 4843   -->wf 5414   iota_crio 6051  recscrecs 6831  OrdIsocoi 7723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-recs 6832  df-oi 7724
This theorem is referenced by:  oion  7750  oieu  7753  oismo  7754  oiid  7755  wofib  7759  cantnflt  7880  cantnfp1lem3  7888  cantnflem1b  7894  cantnflem1  7897  cantnfltOLD  7910  cantnfp1lem3OLD  7914  cantnflem1bOLD  7917  cantnflem1OLD  7920  wemapwe  7928  wemapweOLD  7929  cnfcomlem  7932  cnfcom  7933  cnfcom2lem  7934  cnfcomlemOLD  7940  cnfcomOLD  7941  cnfcom2lemOLD  7942  infxpenlem  8180  hsmexlem1  8595  fpwwe2lem8  8804  fpwwe2lem9  8805  fpwwe2lem10  8806
  Copyright terms: Public domain W3C validator