![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > ogrpgrp | Structured version Unicode version |
Description: An left ordered group is a group. (Contributed by Thierry Arnoux, 9-Jul-2018.) |
Ref | Expression |
---|---|
ogrpgrp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isogrp 26330 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 460 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1955 ax-ext 2432 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2604 df-v 3080 df-in 3446 df-ogrp 26328 |
This theorem is referenced by: ogrpaddltbi 26347 ogrpaddltrbid 26349 ogrpsublt 26350 ogrpinv0lt 26351 ogrpinvlt 26352 isarchi3 26369 |
Copyright terms: Public domain | W3C validator |