Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ogrpaddltbi Structured version   Unicode version

Theorem ogrpaddltbi 28042
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018.)
Hypotheses
Ref Expression
ogrpaddlt.0  |-  B  =  ( Base `  G
)
ogrpaddlt.1  |-  .<  =  ( lt `  G )
ogrpaddlt.2  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ogrpaddltbi  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Y  <->  ( X  .+  Z )  .<  ( Y  .+  Z ) ) )

Proof of Theorem ogrpaddltbi
StepHypRef Expression
1 ogrpaddlt.0 . . . 4  |-  B  =  ( Base `  G
)
2 ogrpaddlt.1 . . . 4  |-  .<  =  ( lt `  G )
3 ogrpaddlt.2 . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3ogrpaddlt 28041 . . 3  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  /\  X  .<  Y )  ->  ( X  .+  Z )  .<  ( Y  .+  Z ) )
543expa 1195 . 2  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  X  .<  Y )  ->  ( X  .+  Z )  .< 
( Y  .+  Z
) )
6 simpll 752 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  G  e. oGrp )
7 ogrpgrp 28026 . . . . . 6  |-  ( G  e. oGrp  ->  G  e.  Grp )
86, 7syl 17 . . . . 5  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  G  e.  Grp )
9 simplr1 1037 . . . . 5  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  X  e.  B )
10 simplr3 1039 . . . . 5  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  Z  e.  B )
111, 3grpcl 16277 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .+  Z
)  e.  B )
128, 9, 10, 11syl3anc 1228 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( X  .+  Z )  e.  B )
13 simplr2 1038 . . . . 5  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  Y  e.  B )
141, 3grpcl 16277 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .+  Z
)  e.  B )
158, 13, 10, 14syl3anc 1228 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( Y  .+  Z )  e.  B )
16 eqid 2400 . . . . . 6  |-  ( invg `  G )  =  ( invg `  G )
171, 16grpinvcl 16309 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
188, 10, 17syl2anc 659 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
19 simpr 459 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( X  .+  Z )  .< 
( Y  .+  Z
) )
201, 2, 3ogrpaddlt 28041 . . . 4  |-  ( ( G  e. oGrp  /\  (
( X  .+  Z
)  e.  B  /\  ( Y  .+  Z )  e.  B  /\  (
( invg `  G ) `  Z
)  e.  B )  /\  ( X  .+  Z )  .<  ( Y  .+  Z ) )  ->  ( ( X 
.+  Z )  .+  ( ( invg `  G ) `  Z
) )  .<  (
( Y  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) ) )
216, 12, 15, 18, 19, 20syl131anc 1241 . . 3  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( X  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) ) 
.<  ( ( Y  .+  Z )  .+  (
( invg `  G ) `  Z
) ) )
221, 3grpass 16278 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B  /\  ( ( invg `  G ) `  Z
)  e.  B ) )  ->  ( ( X  .+  Z )  .+  ( ( invg `  G ) `  Z
) )  =  ( X  .+  ( Z 
.+  ( ( invg `  G ) `
 Z ) ) ) )
238, 9, 10, 18, 22syl13anc 1230 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( X  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) )  =  ( X  .+  ( Z  .+  ( ( invg `  G
) `  Z )
) ) )
24 eqid 2400 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
251, 3, 24, 16grprinv 16311 . . . . . 6  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( Z  .+  (
( invg `  G ) `  Z
) )  =  ( 0g `  G ) )
268, 10, 25syl2anc 659 . . . . 5  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( Z  .+  ( ( invg `  G ) `
 Z ) )  =  ( 0g `  G ) )
2726oveq2d 6248 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( X  .+  ( Z  .+  ( ( invg `  G ) `  Z
) ) )  =  ( X  .+  ( 0g `  G ) ) )
281, 3, 24grprid 16295 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( X  .+  ( 0g `  G ) )  =  X )
298, 9, 28syl2anc 659 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( X  .+  ( 0g `  G ) )  =  X )
3023, 27, 293eqtrd 2445 . . 3  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( X  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) )  =  X )
311, 3grpass 16278 . . . . 5  |-  ( ( G  e.  Grp  /\  ( Y  e.  B  /\  Z  e.  B  /\  ( ( invg `  G ) `  Z
)  e.  B ) )  ->  ( ( Y  .+  Z )  .+  ( ( invg `  G ) `  Z
) )  =  ( Y  .+  ( Z 
.+  ( ( invg `  G ) `
 Z ) ) ) )
328, 13, 10, 18, 31syl13anc 1230 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( Y  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) )  =  ( Y  .+  ( Z  .+  ( ( invg `  G
) `  Z )
) ) )
3326oveq2d 6248 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( Y  .+  ( Z  .+  ( ( invg `  G ) `  Z
) ) )  =  ( Y  .+  ( 0g `  G ) ) )
341, 3, 24grprid 16295 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
358, 13, 34syl2anc 659 . . . 4  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  ( Y  .+  ( 0g `  G ) )  =  Y )
3632, 33, 353eqtrd 2445 . . 3  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  (
( Y  .+  Z
)  .+  ( ( invg `  G ) `
 Z ) )  =  Y )
3721, 30, 363brtr3d 4421 . 2  |-  ( ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  /\  ( X  .+  Z )  .< 
( Y  .+  Z
) )  ->  X  .<  Y )
385, 37impbida 831 1  |-  ( ( G  e. oGrp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Y  <->  ( X  .+  Z )  .<  ( Y  .+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840   class class class wbr 4392   ` cfv 5523  (class class class)co 6232   Basecbs 14731   +g cplusg 14799   0gc0g 14944   ltcplt 15784   Grpcgrp 16267   invgcminusg 16268  oGrpcogrp 28021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-reu 2758  df-rmo 2759  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-iun 4270  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-riota 6194  df-ov 6235  df-0g 14946  df-plt 15802  df-mgm 16086  df-sgrp 16125  df-mnd 16135  df-grp 16271  df-minusg 16272  df-omnd 28022  df-ogrp 28023
This theorem is referenced by:  ogrpinvlt  28047
  Copyright terms: Public domain W3C validator