Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofreq Structured version   Visualization version   Unicode version

Theorem ofreq 6539
 Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq

Proof of Theorem ofreq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4407 . . . 4
21ralbidv 2829 . . 3
32opabbidv 4469 . 2
4 df-ofr 6537 . 2
5 df-ofr 6537 . 2
63, 4, 53eqtr4g 2512 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1446  wral 2739   cin 3405   class class class wbr 4405  copab 4463   cdm 4837  cfv 5585   cofr 6535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-ral 2744  df-br 4406  df-opab 4465  df-ofr 6537 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator