MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofreq Structured version   Visualization version   Unicode version

Theorem ofreq 6539
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq  |-  ( R  =  S  ->  oR R  =  oR S )

Proof of Theorem ofreq
Dummy variables  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4407 . . . 4  |-  ( R  =  S  ->  (
( f `  x
) R ( g `
 x )  <->  ( f `  x ) S ( g `  x ) ) )
21ralbidv 2829 . . 3  |-  ( R  =  S  ->  ( A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) R ( g `  x )  <->  A. x  e.  ( dom  f  i^i  dom  g
) ( f `  x ) S ( g `  x ) ) )
32opabbidv 4469 . 2  |-  ( R  =  S  ->  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) } )
4 df-ofr 6537 . 2  |-  oR R  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) R ( g `
 x ) }
5 df-ofr 6537 . 2  |-  oR S  =  { <. f ,  g >.  |  A. x  e.  ( dom  f  i^i  dom  g )
( f `  x
) S ( g `
 x ) }
63, 4, 53eqtr4g 2512 1  |-  ( R  =  S  ->  oR R  =  oR S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1446   A.wral 2739    i^i cin 3405   class class class wbr 4405   {copab 4463   dom cdm 4837   ` cfv 5585    oRcofr 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-clab 2440  df-cleq 2446  df-clel 2449  df-ral 2744  df-br 4406  df-opab 4465  df-ofr 6537
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator