Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofpreima2 Structured version   Visualization version   Unicode version

Theorem ofpreima2 28321
Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima 28320 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Hypotheses
Ref Expression
ofpreima.1  |-  ( ph  ->  F : A --> B )
ofpreima.2  |-  ( ph  ->  G : A --> C )
ofpreima.3  |-  ( ph  ->  A  e.  V )
ofpreima.4  |-  ( ph  ->  R  Fn  ( B  X.  C ) )
Assertion
Ref Expression
ofpreima2  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
Distinct variable groups:    A, p    D, p    F, p    G, p    R, p    ph, p
Allowed substitution hints:    B( p)    C( p)    V( p)

Proof of Theorem ofpreima2
StepHypRef Expression
1 ofpreima.1 . . . 4  |-  ( ph  ->  F : A --> B )
2 ofpreima.2 . . . 4  |-  ( ph  ->  G : A --> C )
3 ofpreima.3 . . . 4  |-  ( ph  ->  A  e.  V )
4 ofpreima.4 . . . 4  |-  ( ph  ->  R  Fn  ( B  X.  C ) )
51, 2, 3, 4ofpreima 28320 . . 3  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
6 inundif 3857 . . . . 5  |-  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) )  u.  (
( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  =  ( `' R " D )
7 iuneq1 4306 . . . . 5  |-  ( ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) )  u.  (
( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  =  ( `' R " D )  ->  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )
86, 7ax-mp 5 . . . 4  |-  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )
9 iunxun 4377 . . . 4  |-  U_ p  e.  ( ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) )  u.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
108, 9eqtr3i 2486 . . 3  |-  U_ p  e.  ( `' R " D ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
115, 10syl6eq 2512 . 2  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )
12 simpr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  p  e.  ( ( `' R " D ) 
\  ( ran  F  X.  ran  G ) ) )
1312eldifbd 3429 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  -.  p  e.  ( ran  F  X.  ran  G
) )
14 cnvimass 5210 . . . . . . . . . . . . . 14  |-  ( `' R " D ) 
C_  dom  R
15 fndm 5701 . . . . . . . . . . . . . . 15  |-  ( R  Fn  ( B  X.  C )  ->  dom  R  =  ( B  X.  C ) )
164, 15syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  R  =  ( B  X.  C ) )
1714, 16syl5sseq 3492 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' R " D )  C_  ( B  X.  C ) )
1817ssdifssd 3583 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) )  C_  ( B  X.  C ) )
1918sselda 3444 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  p  e.  ( B  X.  C ) )
20 1st2nd2 6862 . . . . . . . . . . 11  |-  ( p  e.  ( B  X.  C )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
21 elxp6 6857 . . . . . . . . . . . 12  |-  ( p  e.  ( ran  F  X.  ran  G )  <->  ( p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  /\  (
( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
) ) )
2221simplbi2 635 . . . . . . . . . . 11  |-  ( p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  ->  (
( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  ->  p  e.  ( ran  F  X.  ran  G ) ) )
2319, 20, 223syl 18 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ( 1st `  p )  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  ->  p  e.  ( ran  F  X.  ran  G ) ) )
2413, 23mtod 182 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  -.  ( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
) )
25 ianor 495 . . . . . . . . 9  |-  ( -.  ( ( 1st `  p
)  e.  ran  F  /\  ( 2nd `  p
)  e.  ran  G
)  <->  ( -.  ( 1st `  p )  e. 
ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
2624, 25sylib 201 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( -.  ( 1st `  p )  e.  ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
27 disjsn 4044 . . . . . . . . 9  |-  ( ( ran  F  i^i  {
( 1st `  p
) } )  =  (/) 
<->  -.  ( 1st `  p
)  e.  ran  F
)
28 disjsn 4044 . . . . . . . . 9  |-  ( ( ran  G  i^i  {
( 2nd `  p
) } )  =  (/) 
<->  -.  ( 2nd `  p
)  e.  ran  G
)
2927, 28orbi12i 528 . . . . . . . 8  |-  ( ( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  <->  ( -.  ( 1st `  p )  e. 
ran  F  \/  -.  ( 2nd `  p )  e.  ran  G ) )
3026, 29sylibr 217 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) ) )
31 ffn 5755 . . . . . . . . . . 11  |-  ( F : A --> B  ->  F  Fn  A )
321, 31syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  A )
33 dffn3 5763 . . . . . . . . . 10  |-  ( F  Fn  A  <->  F : A
--> ran  F )
3432, 33sylib 201 . . . . . . . . 9  |-  ( ph  ->  F : A --> ran  F
)
3534adantr 471 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  F : A --> ran  F
)
36 ffn 5755 . . . . . . . . . . 11  |-  ( G : A --> C  ->  G  Fn  A )
372, 36syl 17 . . . . . . . . . 10  |-  ( ph  ->  G  Fn  A )
38 dffn3 5763 . . . . . . . . . 10  |-  ( G  Fn  A  <->  G : A
--> ran  G )
3937, 38sylib 201 . . . . . . . . 9  |-  ( ph  ->  G : A --> ran  G
)
4039adantr 471 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  ->  G : A --> ran  G
)
41 fimacnvdisj 5788 . . . . . . . . . . 11  |-  ( ( F : A --> ran  F  /\  ( ran  F  i^i  { ( 1st `  p
) } )  =  (/) )  ->  ( `' F " { ( 1st `  p ) } )  =  (/) )
42 ineq1 3639 . . . . . . . . . . . 12  |-  ( ( `' F " { ( 1st `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  ( (/)  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
43 incom 3637 . . . . . . . . . . . . 13  |-  ( (/)  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  ( ( `' G " { ( 2nd `  p ) } )  i^i  (/) )
44 in0 3772 . . . . . . . . . . . . 13  |-  ( ( `' G " { ( 2nd `  p ) } )  i^i  (/) )  =  (/)
4543, 44eqtri 2484 . . . . . . . . . . . 12  |-  ( (/)  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/)
4642, 45syl6eq 2512 . . . . . . . . . . 11  |-  ( ( `' F " { ( 1st `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
4741, 46syl 17 . . . . . . . . . 10  |-  ( ( F : A --> ran  F  /\  ( ran  F  i^i  { ( 1st `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
4847ex 440 . . . . . . . . 9  |-  ( F : A --> ran  F  ->  ( ( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
49 fimacnvdisj 5788 . . . . . . . . . . 11  |-  ( ( G : A --> ran  G  /\  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( `' G " { ( 2nd `  p ) } )  =  (/) )
50 ineq2 3640 . . . . . . . . . . . 12  |-  ( ( `' G " { ( 2nd `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  ( ( `' F " { ( 1st `  p ) } )  i^i  (/) ) )
51 in0 3772 . . . . . . . . . . . 12  |-  ( ( `' F " { ( 1st `  p ) } )  i^i  (/) )  =  (/)
5250, 51syl6eq 2512 . . . . . . . . . . 11  |-  ( ( `' G " { ( 2nd `  p ) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
5349, 52syl 17 . . . . . . . . . 10  |-  ( ( G : A --> ran  G  /\  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
5453ex 440 . . . . . . . . 9  |-  ( G : A --> ran  G  ->  ( ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/)  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5548, 54jaao 516 . . . . . . . 8  |-  ( ( F : A --> ran  F  /\  G : A --> ran  G
)  ->  ( (
( ran  F  i^i  { ( 1st `  p
) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p
) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5635, 40, 55syl2anc 671 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( ( ran 
F  i^i  { ( 1st `  p ) } )  =  (/)  \/  ( ran  G  i^i  { ( 2nd `  p ) } )  =  (/) )  ->  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) ) )
5730, 56mpd 15 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) )  -> 
( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  =  (/) )
5857iuneq2dv 4314 . . . . 5  |-  ( ph  ->  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  = 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) (/) )
59 iun0 4348 . . . . 5  |-  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) (/)  =  (/)
6058, 59syl6eq 2512 . . . 4  |-  ( ph  ->  U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  =  (/) )
6160uneq2d 3600 . . 3  |-  ( ph  ->  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  =  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u.  (/) ) )
62 un0 3771 . . 3  |-  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )  u.  (/) )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G ) ) ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) )
6361, 62syl6eq 2512 . 2  |-  ( ph  ->  ( U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) )  u. 
U_ p  e.  ( ( `' R " D )  \  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
6411, 63eqtrd 2496 1  |-  ( ph  ->  ( `' ( F  oF R G ) " D )  =  U_ p  e.  ( ( `' R " D )  i^i  ( ran  F  X.  ran  G
) ) ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898    \ cdif 3413    u. cun 3414    i^i cin 3415   (/)c0 3743   {csn 3980   <.cop 3986   U_ciun 4292    X. cxp 4854   `'ccnv 4855   dom cdm 4856   ran crn 4857   "cima 4859    Fn wfn 5600   -->wf 5601   ` cfv 5605  (class class class)co 6320    oFcof 6561   1stc1st 6823   2ndc2nd 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-of 6563  df-1st 6825  df-2nd 6826
This theorem is referenced by:  sibfof  29223
  Copyright terms: Public domain W3C validator