MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmresex Structured version   Unicode version

Theorem ofmresex 6778
Description: Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.)
Hypotheses
Ref Expression
ofmresex.a  |-  ( ph  ->  A  e.  V )
ofmresex.b  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
ofmresex  |-  ( ph  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )

Proof of Theorem ofmresex
StepHypRef Expression
1 ofmresex.a . . 3  |-  ( ph  ->  A  e.  V )
2 ofmresex.b . . 3  |-  ( ph  ->  B  e.  W )
3 xpexg 6709 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
41, 2, 3syl2anc 661 . 2  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
5 ofexg 6526 . 2  |-  ( ( A  X.  B )  e.  _V  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )
64, 5syl 16 1  |-  ( ph  ->  (  oF R  |`  ( A  X.  B
) )  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   _Vcvv 3113    X. cxp 4997    |` cres 5001    oFcof 6520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-oprab 6286  df-mpt2 6287  df-of 6522
This theorem is referenced by:  ldualfvadd  33925
  Copyright terms: Public domain W3C validator