MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofmres Structured version   Unicode version

Theorem ofmres 6568
Description: Equivalent expressions for a restriction of the function operation map. Unlike  oF R which is a proper class,  (  oF R  |  `  ( A  X.  B
) ) can be a set by ofmresex 6569, allowing it to be used as a function or structure argument. By ofmresval 6327, the restricted operation map values are the same as the original values, allowing theorems for  oF R to be reused. (Contributed by NM, 20-Oct-2014.)
Assertion
Ref Expression
ofmres  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Distinct variable groups:    f, g, A    B, f, g    R, f, g

Proof of Theorem ofmres
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssv 3371 . . 3  |-  A  C_  _V
2 ssv 3371 . . 3  |-  B  C_  _V
3 resmpt2 6183 . . 3  |-  ( ( A  C_  _V  /\  B  C_ 
_V )  ->  (
( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) ) )
41, 2, 3mp2an 672 . 2  |-  ( ( f  e.  _V , 
g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )  |`  ( A  X.  B
) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
5 df-of 6315 . . 3  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
65reseq1i 5101 . 2  |-  (  oF R  |`  ( A  X.  B ) )  =  ( ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )  |`  ( A  X.  B ) )
7 eqid 2438 . . 3  |-  A  =  A
8 eqid 2438 . . 3  |-  B  =  B
9 vex 2970 . . . 4  |-  f  e. 
_V
10 vex 2970 . . . 4  |-  g  e. 
_V
119dmex 6506 . . . . . 6  |-  dom  f  e.  _V
1211inex1 4428 . . . . 5  |-  ( dom  f  i^i  dom  g
)  e.  _V
1312mptex 5943 . . . 4  |-  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )  e.  _V
145ovmpt4g 6208 . . . 4  |-  ( ( f  e.  _V  /\  g  e.  _V  /\  (
x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) )  e. 
_V )  ->  (
f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
159, 10, 13, 14mp3an 1314 . . 3  |-  ( f  oF R g )  =  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) )
167, 8, 15mpt2eq123i 6144 . 2  |-  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )  =  ( f  e.  A , 
g  e.  B  |->  ( x  e.  ( dom  f  i^i  dom  g
)  |->  ( ( f `
 x ) R ( g `  x
) ) ) )
174, 6, 163eqtr4i 2468 1  |-  (  oF R  |`  ( A  X.  B ) )  =  ( f  e.  A ,  g  e.  B  |->  ( f  oF R g ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    e. wcel 1756   _Vcvv 2967    i^i cin 3322    C_ wss 3323    e. cmpt 4345    X. cxp 4833   dom cdm 4835    |` cres 4837   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088    oFcof 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315
This theorem is referenced by:  mplsubrglem  17494  mplsubrglemOLD  17495  psrplusgpropd  17665
  Copyright terms: Public domain W3C validator