Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofmpteq Unicode version

Theorem ofmpteq 26666
Description: Value of a pointwise operation on two functions defined using maps-to notation. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
ofmpteq  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hints:    B( x)    C( x)    V( x)

Proof of Theorem ofmpteq
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  A  e.  V )
2 simpr 448 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  a  e.  A )
3 simpl2 961 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  B )  Fn  A )
4 eqid 2404 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
54mptfng 5529 . . . . 5  |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
63, 5sylibr 204 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  B  e.  _V )
7 nfcsb1v 3243 . . . . . 6  |-  F/_ x [_ a  /  x ]_ B
87nfel1 2550 . . . . 5  |-  F/ x [_ a  /  x ]_ B  e.  _V
9 csbeq1a 3219 . . . . . 6  |-  ( x  =  a  ->  B  =  [_ a  /  x ]_ B )
109eleq1d 2470 . . . . 5  |-  ( x  =  a  ->  ( B  e.  _V  <->  [_ a  /  x ]_ B  e.  _V ) )
118, 10rspc 3006 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  B  e.  _V  ->  [_ a  /  x ]_ B  e.  _V )
)
122, 6, 11sylc 58 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ B  e. 
_V )
13 simpl3 962 . . . . 5  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  (
x  e.  A  |->  C )  Fn  A )
14 eqid 2404 . . . . . 6  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
1514mptfng 5529 . . . . 5  |-  ( A. x  e.  A  C  e.  _V  <->  ( x  e.  A  |->  C )  Fn  A )
1613, 15sylibr 204 . . . 4  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  A. x  e.  A  C  e.  _V )
17 nfcsb1v 3243 . . . . . 6  |-  F/_ x [_ a  /  x ]_ C
1817nfel1 2550 . . . . 5  |-  F/ x [_ a  /  x ]_ C  e.  _V
19 csbeq1a 3219 . . . . . 6  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
2019eleq1d 2470 . . . . 5  |-  ( x  =  a  ->  ( C  e.  _V  <->  [_ a  /  x ]_ C  e.  _V ) )
2118, 20rspc 3006 . . . 4  |-  ( a  e.  A  ->  ( A. x  e.  A  C  e.  _V  ->  [_ a  /  x ]_ C  e.  _V )
)
222, 16, 21sylc 58 . . 3  |-  ( ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e. 
_V )
23 nfcv 2540 . . . . 5  |-  F/_ a B
2423, 7, 9cbvmpt 4259 . . . 4  |-  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B )
2524a1i 11 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  B )  =  ( a  e.  A  |->  [_ a  /  x ]_ B ) )
26 nfcv 2540 . . . . 5  |-  F/_ a C
2726, 17, 19cbvmpt 4259 . . . 4  |-  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C )
2827a1i 11 . . 3  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( x  e.  A  |->  C )  =  ( a  e.  A  |->  [_ a  /  x ]_ C ) )
291, 12, 22, 25, 28offval2 6281 . 2  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) ) )
30 nfcv 2540 . . 3  |-  F/_ a
( B R C )
31 nfcv 2540 . . . 4  |-  F/_ x R
327, 31, 17nfov 6063 . . 3  |-  F/_ x
( [_ a  /  x ]_ B R [_ a  /  x ]_ C )
339, 19oveq12d 6058 . . 3  |-  ( x  =  a  ->  ( B R C )  =  ( [_ a  /  x ]_ B R [_ a  /  x ]_ C
) )
3430, 32, 33cbvmpt 4259 . 2  |-  ( x  e.  A  |->  ( B R C ) )  =  ( a  e.  A  |->  ( [_ a  /  x ]_ B R
[_ a  /  x ]_ C ) )
3529, 34syl6eqr 2454 1  |-  ( ( A  e.  V  /\  ( x  e.  A  |->  B )  Fn  A  /\  ( x  e.  A  |->  C )  Fn  A
)  ->  ( (
x  e.  A  |->  B )  o F R ( x  e.  A  |->  C ) )  =  ( x  e.  A  |->  ( B R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916   [_csb 3211    e. cmpt 4226    Fn wfn 5408  (class class class)co 6040    o Fcof 6262
This theorem is referenced by:  mzpaddmpt  26688  mzpmulmpt  26689  mzpcompact2lem  26698
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264
  Copyright terms: Public domain W3C validator