Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  off2 Structured version   Unicode version

Theorem off2 27182
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Hypotheses
Ref Expression
off2.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
off2.2  |-  ( ph  ->  F : A --> S )
off2.3  |-  ( ph  ->  G : B --> T )
off2.4  |-  ( ph  ->  A  e.  V )
off2.5  |-  ( ph  ->  B  e.  W )
off2.6  |-  ( ph  ->  ( A  i^i  B
)  =  C )
Assertion
Ref Expression
off2  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Distinct variable groups:    y, G    x, y, ph    x, S, y   
x, T, y    x, F, y    x, R, y   
x, U, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    G( x)    V( x, y)    W( x, y)

Proof of Theorem off2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 off2.2 . . . . . 6  |-  ( ph  ->  F : A --> S )
21adantr 465 . . . . 5  |-  ( (
ph  /\  z  e.  C )  ->  F : A --> S )
3 off2.6 . . . . . . 7  |-  ( ph  ->  ( A  i^i  B
)  =  C )
4 inss1 3718 . . . . . . 7  |-  ( A  i^i  B )  C_  A
53, 4syl6eqssr 3555 . . . . . 6  |-  ( ph  ->  C  C_  A )
65sselda 3504 . . . . 5  |-  ( (
ph  /\  z  e.  C )  ->  z  e.  A )
72, 6ffvelrnd 6022 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( F `  z )  e.  S )
8 off2.3 . . . . . 6  |-  ( ph  ->  G : B --> T )
98adantr 465 . . . . 5  |-  ( (
ph  /\  z  e.  C )  ->  G : B --> T )
10 inss2 3719 . . . . . . 7  |-  ( A  i^i  B )  C_  B
113, 10syl6eqssr 3555 . . . . . 6  |-  ( ph  ->  C  C_  B )
1211sselda 3504 . . . . 5  |-  ( (
ph  /\  z  e.  C )  ->  z  e.  B )
139, 12ffvelrnd 6022 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  ( G `  z )  e.  T )
14 off2.1 . . . . . 6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  T ) )  -> 
( x R y )  e.  U )
1514ralrimivva 2885 . . . . 5  |-  ( ph  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
1615adantr 465 . . . 4  |-  ( (
ph  /\  z  e.  C )  ->  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U )
17 proplem2 14944 . . . 4  |-  ( ( ( ( F `  z )  e.  S  /\  ( G `  z
)  e.  T )  /\  A. x  e.  S  A. y  e.  T  ( x R y )  e.  U
)  ->  ( ( F `  z ) R ( G `  z ) )  e.  U )
187, 13, 16, 17syl21anc 1227 . . 3  |-  ( (
ph  /\  z  e.  C )  ->  (
( F `  z
) R ( G `
 z ) )  e.  U )
19 eqid 2467 . . 3  |-  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) )  =  ( z  e.  C  |->  ( ( F `
 z ) R ( G `  z
) ) )
2018, 19fmptd 6045 . 2  |-  ( ph  ->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U )
21 ffn 5731 . . . . . 6  |-  ( F : A --> S  ->  F  Fn  A )
221, 21syl 16 . . . . 5  |-  ( ph  ->  F  Fn  A )
23 ffn 5731 . . . . . 6  |-  ( G : B --> T  ->  G  Fn  B )
248, 23syl 16 . . . . 5  |-  ( ph  ->  G  Fn  B )
25 off2.4 . . . . 5  |-  ( ph  ->  A  e.  V )
26 off2.5 . . . . 5  |-  ( ph  ->  B  e.  W )
27 eqid 2467 . . . . 5  |-  ( A  i^i  B )  =  ( A  i^i  B
)
28 eqidd 2468 . . . . 5  |-  ( (
ph  /\  z  e.  A )  ->  ( F `  z )  =  ( F `  z ) )
29 eqidd 2468 . . . . 5  |-  ( (
ph  /\  z  e.  B )  ->  ( G `  z )  =  ( G `  z ) )
3022, 24, 25, 26, 27, 28, 29offval 6531 . . . 4  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  ( A  i^i  B ) 
|->  ( ( F `  z ) R ( G `  z ) ) ) )
313mpteq1d 4528 . . . 4  |-  ( ph  ->  ( z  e.  ( A  i^i  B ) 
|->  ( ( F `  z ) R ( G `  z ) ) )  =  ( z  e.  C  |->  ( ( F `  z
) R ( G `
 z ) ) ) )
3230, 31eqtrd 2508 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) )
3332feq1d 5717 . 2  |-  ( ph  ->  ( ( F  oF R G ) : C --> U  <->  ( z  e.  C  |->  ( ( F `  z ) R ( G `  z ) ) ) : C --> U ) )
3420, 33mpbird 232 1  |-  ( ph  ->  ( F  oF R G ) : C --> U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    |-> cmpt 4505    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284    oFcof 6522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator