MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofco Structured version   Visualization version   Unicode version

Theorem ofco 6578
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
ofco.1  |-  ( ph  ->  F  Fn  A )
ofco.2  |-  ( ph  ->  G  Fn  B )
ofco.3  |-  ( ph  ->  H : D --> C )
ofco.4  |-  ( ph  ->  A  e.  V )
ofco.5  |-  ( ph  ->  B  e.  W )
ofco.6  |-  ( ph  ->  D  e.  X )
ofco.7  |-  ( A  i^i  B )  =  C
Assertion
Ref Expression
ofco  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )

Proof of Theorem ofco
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofco.3 . . . 4  |-  ( ph  ->  H : D --> C )
21ffvelrnda 6045 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  ( H `  x )  e.  C )
31feqmptd 5941 . . 3  |-  ( ph  ->  H  =  ( x  e.  D  |->  ( H `
 x ) ) )
4 ofco.1 . . . 4  |-  ( ph  ->  F  Fn  A )
5 ofco.2 . . . 4  |-  ( ph  ->  G  Fn  B )
6 ofco.4 . . . 4  |-  ( ph  ->  A  e.  V )
7 ofco.5 . . . 4  |-  ( ph  ->  B  e.  W )
8 ofco.7 . . . 4  |-  ( A  i^i  B )  =  C
9 eqidd 2463 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( F `  y ) )
10 eqidd 2463 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  ( G `  y )  =  ( G `  y ) )
114, 5, 6, 7, 8, 9, 10offval 6565 . . 3  |-  ( ph  ->  ( F  oF R G )  =  ( y  e.  C  |->  ( ( F `  y ) R ( G `  y ) ) ) )
12 fveq2 5888 . . . 4  |-  ( y  =  ( H `  x )  ->  ( F `  y )  =  ( F `  ( H `  x ) ) )
13 fveq2 5888 . . . 4  |-  ( y  =  ( H `  x )  ->  ( G `  y )  =  ( G `  ( H `  x ) ) )
1412, 13oveq12d 6333 . . 3  |-  ( y  =  ( H `  x )  ->  (
( F `  y
) R ( G `
 y ) )  =  ( ( F `
 ( H `  x ) ) R ( G `  ( H `  x )
) ) )
152, 3, 11, 14fmptco 6080 . 2  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
16 inss1 3664 . . . . . 6  |-  ( A  i^i  B )  C_  A
178, 16eqsstr3i 3475 . . . . 5  |-  C  C_  A
18 fss 5760 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  A )  ->  H : D --> A )
191, 17, 18sylancl 673 . . . 4  |-  ( ph  ->  H : D --> A )
20 fnfco 5771 . . . 4  |-  ( ( F  Fn  A  /\  H : D --> A )  ->  ( F  o.  H )  Fn  D
)
214, 19, 20syl2anc 671 . . 3  |-  ( ph  ->  ( F  o.  H
)  Fn  D )
22 inss2 3665 . . . . . 6  |-  ( A  i^i  B )  C_  B
238, 22eqsstr3i 3475 . . . . 5  |-  C  C_  B
24 fss 5760 . . . . 5  |-  ( ( H : D --> C  /\  C  C_  B )  ->  H : D --> B )
251, 23, 24sylancl 673 . . . 4  |-  ( ph  ->  H : D --> B )
26 fnfco 5771 . . . 4  |-  ( ( G  Fn  B  /\  H : D --> B )  ->  ( G  o.  H )  Fn  D
)
275, 25, 26syl2anc 671 . . 3  |-  ( ph  ->  ( G  o.  H
)  Fn  D )
28 ofco.6 . . 3  |-  ( ph  ->  D  e.  X )
29 inidm 3653 . . 3  |-  ( D  i^i  D )  =  D
30 ffn 5751 . . . . 5  |-  ( H : D --> C  ->  H  Fn  D )
311, 30syl 17 . . . 4  |-  ( ph  ->  H  Fn  D )
32 fvco2 5963 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( F  o.  H ) `  x
)  =  ( F `
 ( H `  x ) ) )
3331, 32sylan 478 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( F  o.  H
) `  x )  =  ( F `  ( H `  x ) ) )
34 fvco2 5963 . . . 4  |-  ( ( H  Fn  D  /\  x  e.  D )  ->  ( ( G  o.  H ) `  x
)  =  ( G `
 ( H `  x ) ) )
3531, 34sylan 478 . . 3  |-  ( (
ph  /\  x  e.  D )  ->  (
( G  o.  H
) `  x )  =  ( G `  ( H `  x ) ) )
3621, 27, 28, 28, 29, 33, 35offval 6565 . 2  |-  ( ph  ->  ( ( F  o.  H )  oF R ( G  o.  H ) )  =  ( x  e.  D  |->  ( ( F `  ( H `  x ) ) R ( G `
 ( H `  x ) ) ) ) )
3715, 36eqtr4d 2499 1  |-  ( ph  ->  ( ( F  oF R G )  o.  H )  =  ( ( F  o.  H )  oF R ( G  o.  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    = wceq 1455    e. wcel 1898    i^i cin 3415    C_ wss 3416    |-> cmpt 4475    o. ccom 4857    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6315    oFcof 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558
This theorem is referenced by:  gsumzaddlem  17603  coe1add  18906  pf1ind  18992  mendring  36103
  Copyright terms: Public domain W3C validator